Azure Cosmos DB Source Connector for Confluent Cloud¶
Note
This is a Quick Start for the managed cloud connector.
The fully-managed Microsoft Azure Cosmos Source connector for Confluent Cloud reads records from an Azure Cosmos database and writes data to Apache Kafka® topics in Confluent Cloud.
Features¶
The Azure Cosmos DB Source connector supports the following features:
- Topic to Container mapping: The connector can map a container (table) to an individual Kafka topic (that is,
topic1#con1,topic2#con2
). - At least once delivery: This connector guarantees that records from the Kafka topic are delivered at least once.
- Supports multiple tasks: The connector supports running one or more tasks. More tasks may improve performance. Note that one container (table) can be handled by one task.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect section.
Limitations¶
Be sure to review the following information.
- For connector limitations, see Azure Cosmos DB Source Connector limitations.
- If you plan to use one or more Single Message Transforms (SMTs), see SMT Limitations.
- If you plan to use Confluent Cloud Schema Registry, see Schema Registry Enabled Environments.
Quick Start¶
Use this quick start to get up and running with the Confluent Cloud Azure Cosmos DB Source connector. The quick start provides the basics of selecting the connector and configuring it to stream events from a database to Kafka.
- Prerequisites
Authorized access to a Confluent Cloud cluster on Amazon Web Services (AWS), Microsoft Azure (Azure), or Google Cloud Platform (GCP).
The Confluent CLI installed and configured for the cluster. See Install the Confluent CLI.
Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON_SR (JSON Schema), or Protobuf).
Authorized access to read data Azure Cosmos. For more information, see Secure access to data in Azure Cosmos DB.
The Azure Cosmos DB is configured to use the Core (SQL) API.
Core (SQL) API selection¶
Using the Confluent Cloud Console¶
Step 1: Launch your Confluent Cloud cluster.¶
See the Quick Start for Confluent Cloud for installation instructions.
Step 2: Add a connector.¶
In the left navigation menu, click Connectors. If you already have connectors in your cluster, click + Add connector.
Step 4: Enter the connector details.¶
Note
- Make sure you have all your prerequisites completed.
- An asterisk ( * ) designates a required entry.
At the Add Azure Cosmos DB Source Connector screen, complete the following:
- Select the way you want to provide Kafka Cluster credentials. You can
choose one of the following options:
- Global Access: Allows your connector to access everything you have access to. With global access, connector access will be linked to your account. This option is not recommended for production.
- Granular access: Limits the access for your connector. You will be able to manage connector access through a service account. This option is recommended for production.
- Use an existing API key: Allows you to enter an API key and secret part you have stored. You can enter an API key and secret (or generate these in the Cloud Console).
- Click Continue.
- Add the following database connection details:
- Cosmos Endpoint: The Azure Cosmos database endpoint URL. For
example,
https://confluent-azure-cosmosdb.documents.azure.com:443/
. - Cosmos Connection Key: The Azure Cosmos database connection master (primary) key.
- Cosmos Database name: The name of the Azure Cosmos database from which the connector reads data.
- Cosmos Endpoint: The Azure Cosmos database endpoint URL. For
example,
- Click Continue.
Add the following details:
- Select the output record value format (data going to the Kafka topic): AVRO, JSON, JSON_SR (JSON Schema), or PROTOBUF. Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON Schema, or Protobuf). See Schema Registry Enabled Environments for additional information.
- Topic-Container map: A comma-delimited list of Kafka topics mapped
to Cosmos containers. For example:
topic1#con1,topic2#con2
. The field accepts regex pattern*[\\w.-]+ *#[^,]+(, *[\\w.-]+ *#[^,]+)*
. - Kafka message key enabled: Whether or not to set a Kafka message
key. Defaults to
id
. - Kafka message key field: The document field to use for the Kafka
message key if the default key
id
is not used.
Show advanced configurations
Task timeout: The maximum number of milliseconds (ms) the connector task reads documents before sending them to Kafka. Defaults to
5000
ms.Task reader buffer size: The maximum buffer size (bytes) that the connector task buffers before sending documents to Kafka. Defaults to
10000
bytes.Task batch size: The maximum number of documents the connector batches before sending to Kafka. Defaults to
100
.Task poll interval: The polling interval in ms that a connector source task polls for changes. Defaults to
1000
ms.Transforms and Predicates: See the Single Message Transforms (SMT) documentation for details.
For all property and value definitions, see ref:cc_azure-cosmos-source-config-properties.
Click Continue.
Based on the number of topic partitions you select, you will be provided with a recommended number of tasks.
- To change the number of tasks, use the Range Slider to select the desired number of tasks.
- Click Continue.
Verify the connection details by previewing the running configuration.
After you’ve validated that the properties are configured to your satisfaction, click Launch.
The status for the connector should go from Provisioning to Running.
Step 5: Check for files.¶
Verify that data is being produced in Kafka.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect section.
Using the Confluent CLI¶
To set up and run the connector using the Confluent CLI, complete the following steps.
Note
Make sure you have all your prerequisites completed.
Step 1: List the available connectors.¶
Enter the following command to list available connectors:
confluent connect plugin list
Step 2: List the connector configuration properties.¶
Enter the following command to show the connector configuration properties:
confluent connect plugin describe <connector-catalog-name>
The command output shows the required and optional configuration properties.
Step 3: Create the connector configuration file.¶
Create a JSON file that contains the connector configuration properties. The following example shows the required connector properties.
{
"name": "CosmosDbSourceConnector_0",
"config": {
"connector.class": "CosmosDbSource",
"name": "CosmosDbSourceConnector_0",
"connect.cosmos.connection.endpoint": "https://confluent-azure-cosmosdb.documents.azure.com:443/",
"connect.cosmos.master.key": "****************************************",
"connect.cosmos.databasename": "ToDoList",
"connect.cosmos.containers.topicmap": "Kafka-Items#Items",
"output.data.format": "AVRO",
"connect.cosmos.messagekey.enabled": "true",
"kafka.auth.mode": "KAFKA_API_KEY",
"kafka.api.key": "****************",
"kafka.api.secret": "**********************************",
"tasks.max": "1"
}
}
Note the following property definitions:
"connector.class"
: Identifies the connector plugin name."name"
: Sets a name for your new connector."connect.cosmos.containers.topicmap"
: Enter a comma-delimited list of Kafka topics mapped to Cosmos containers. For example:topic1#con1,topic2#con2
. The field accepts regex pattern*[\\w.-]+ *#[^,]+(, *[\\w.-]+ *#[^,]+)*
."output.data.format"
(data going to the Kafka topic): Supports AVRO, JSON_SR (JSON Schema), PROTOBUF, or JSON (schemaless). Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON_SR (JSON Schema), or Protobuf). See Schema Registry Enabled Environments for additional information."connect.cosmos.messagekey.enabled"
: Whether or not to set a Kafka message key. Defaults toid
. To set a different field for the message key, add the configuration propertyconnect.cosmos.messagekey.field
.
"kafka.auth.mode"
: Identifies the connector authentication mode you want to use. There are two options:SERVICE_ACCOUNT
orKAFKA_API_KEY
(the default). To use an API key and secret, specify the configuration propertieskafka.api.key
andkafka.api.secret
, as shown in the example configuration (above). To use a service account, specify the Resource ID in the propertykafka.service.account.id=<service-account-resource-ID>
. To list the available service account resource IDs, use the following command:confluent iam service-account list
For example:
confluent iam service-account list Id | Resource ID | Name | Description +---------+-------------+-------------------+------------------- 123456 | sa-l1r23m | sa-1 | Service account 1 789101 | sa-l4d56p | sa-2 | Service account 2
"tasks.max"
: Enter the maximum number of tasks for the connector to use. More tasks may improve performance.
Single Message Transforms: See the Single Message Transforms (SMT) documentation for details about adding SMTs using the CLI.
See Configuration Properties for all property values and descriptions.
Step 3: Load the properties file and create the connector.¶
Enter the following command to load the configuration and start the connector:
confluent connect cluster create --config-file <file-name>.json
For example:
confluent connect cluster create --config-file azure-cosmos-source-config.json
Example output:
Created connector CosmosDbSourceConnector_0 lcc-do6vzd
Step 4: Check the connector status.¶
Enter the following command to check the connector status:
confluent connect cluster list
Example output:
ID | Name | Status | Type | Trace
+------------+----------------------------+---------+--------+-------+
lcc-do6vzd |CosmosDbSourceConnector_0 | RUNNING | Source | |
Step 5: Check for files.¶
Verify that data is being produced in Kafka.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect section.
Configuration Properties¶
Use the following configuration properties with this connector.
Note
These are properties for the managed cloud connector.
How should we connect to your data?¶
name
Sets a name for your connector.
- Type: string
- Valid Values: A string at most 64 characters long
- Importance: high
Kafka Cluster credentials¶
kafka.auth.mode
Kafka Authentication mode. It can be one of KAFKA_API_KEY or SERVICE_ACCOUNT. It defaults to KAFKA_API_KEY mode.
- Type: string
- Default: KAFKA_API_KEY
- Valid Values: KAFKA_API_KEY, SERVICE_ACCOUNT
- Importance: high
kafka.api.key
Kafka API Key. Required when kafka.auth.mode==KAFKA_API_KEY.
- Type: password
- Importance: high
kafka.service.account.id
The Service Account that will be used to generate the API keys to communicate with Kafka Cluster.
- Type: string
- Importance: high
kafka.api.secret
Secret associated with Kafka API key. Required when kafka.auth.mode==KAFKA_API_KEY.
- Type: password
- Importance: high
How should we connect to your Cosmos DB database?¶
connect.cosmos.connection.endpoint
Cosmos endpoint URL.
- Type: string
- Importance: high
connect.cosmos.master.key
Cosmos connection master (primary) key.
- Type: password
- Importance: high
connect.cosmos.databasename
Name of the database to read from.
- Type: string
- Importance: high
Database details¶
connect.cosmos.containers.topicmap
A comma delimited list of Kafka topics mapped to Cosmos containers. For example: topic1#con1,topic2#con2.
- Type: string
- Valid Values: Must match the regex
\s*[\w.-]+ *#[^,]+(, *[\w.-]+ *#[^,]+)*
- Importance: high
Connection details¶
connect.cosmos.task.timeout
The maximum number of milliseconds the source task will use to read documents before sending them to Kafka.
- Type: int
- Default: 5000
- Importance: low
connect.cosmos.task.buffer.size
The max size the container of documents (in bytes) the source task will buffer before sending them to Kafka.
- Type: int
- Default: 10000
- Valid Values: [1,…,1000000]
- Importance: low
connect.cosmos.task.batch.size
The max number of documents the source task will buffer before sending them to Kafka.
- Type: int
- Default: 100
- Valid Values: [1,…]
- Importance: low
connect.cosmos.task.poll.interval
The polling interval in milliseconds that a source task polls for changes.
- Type: int
- Default: 1000
- Importance: low
Output messages¶
output.data.format
Sets the output Kafka record value format. Valid entries are AVRO, JSON_SR, PROTOBUF, or JSON. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF
- Type: string
- Importance: high
connect.cosmos.messagekey.enabled
Whether to set the Kafka message key.
- Type: boolean
- Default: true
- Importance: high
connect.cosmos.messagekey.field
The document field to use as the message key.
- Type: string
- Default: id
- Importance: high
Number of tasks for this connector¶
tasks.max
Maximum number of tasks for the connector.
- Type: int
- Valid Values: [1,…]
- Importance: high
Next Steps¶
For an example that shows fully-managed Confluent Cloud connectors in action with Confluent Cloud ksqlDB, see the Cloud ETL Demo. This example also shows how to use Confluent CLI to manage your resources in Confluent Cloud.