Redis Kafka Source Connector for Confluent Cloud¶
The fully-managed Redis Kafka Source connector for Confluent Cloud moves data from a Redis database into an Apache Kafka® cluster. The connector captures changes from Redis data structures (streams and keys) and publishes them to a Kafka topic, enabling real-time data streaming from Redis to Kafka.
For example, when you configure the connector to monitor a Redis stream, it reads stream entries and publishes messages to a Kafka topic. Similarly, when monitoring Redis keyspace notifications, the connector captures changes to keys in a Redis database, and publishes keys and values to a Kafka topic. The connector maps the data structure key to the record key, and the value to the record value.
Features¶
The connector offers the following features:
Delivery guarantees: The Stream Source connector can be configured to acknowledge stream messages either automatically (for at-most-once delivery) or explicitly (for at-least-once delivery). The default is at-least-once delivery.
The Keys Source connector does not guarantee data consistency because it relies on Redis keyspace notifications, which have no delivery guarantees. It is possible to miss some notifications, for example, due to network failures.
Database authentication: The connector uses password authentication.
Supported data formats: The connector supports AVRO, JSON, JSON_SR (JSON Schema), PROTOBUF, STRING, or BYTES output formats. Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro). For more information, see Schema Registry Enabled Environments.
Client-side field level encryption (CSFLE) support: The connector supports CSFLE for sensitive data. For more information about CSFLE setup, see the connector configuration.
Unified source connector experience: The connector offers a unified experience by combining the functionalities of a Keys Source Connector and a Stream Source Connector. This allows you to choose your desired source type during initial configuration.
You select either
KEYS
orSTREAM
as thesource.type
when you set up the connector.Supports multiple tasks: The Stream Source connector supports running one or more tasks. More tasks may improve performance.
The Keys Source connector can be configured with only one task.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.
Limitations¶
Be sure to review the following information.
- For connector limitations, see Redis Kafka Source limitations.
- If you plan to use one or more Single Message Transforms (SMTs), see SMT Limitations.
- If you plan to use Confluent Cloud Schema Registry, see Schema Registry Enabled Environments.
Maximum message size¶
This connector creates topics automatically. When it creates topics, the internal connector configuration property max.message.bytes
is set to the following:
- Basic cluster:
8 MB
- Standard cluster:
8 MB
- Enterprise cluster:
8 MB
- Dedicated cluster:
20 MB
For more information about Confluent Cloud clusters, see Kafka Cluster Types in Confluent Cloud.
Quick Start¶
Use this quick start to get up and running with the Confluent Cloud Redis Kafka Source connector. The quick start provides the basics of selecting the connector and configuring it to consume data from Redis database and persist the data to Kafka.
- Prerequisites
- Authorized access to a Confluent Cloud cluster on Amazon Web Services (AWS), Microsoft Azure (Azure), or Google Cloud.
- The Confluent CLI installed and configured for the cluster. For more information, see Install the Confluent CLI.
- Schema Registry must be enabled to use a Schema Registry-based format (for example, AVRO, JSON_SR (JSON Schema), or PROTOBUF). For more information, see Schema Registry Enabled Environments.
- Access to a Redis server.
- For networking considerations, see Networking and DNS. To use a set of public egress IP addresses, see Public Egress IP Addresses for Confluent Cloud Connectors.
- Kafka cluster credentials. The following lists the different ways you can provide credentials.
- Enter an existing service account resource ID.
- Create a Confluent Cloud service account for the connector. Make sure to review the ACL entries required in the service account documentation. Some connectors have specific ACL requirements.
- Create a Confluent Cloud API key and secret. To create a key and secret, you can use confluent api-key create or you can autogenerate the API key and secret directly in the Cloud Console when setting up the connector.
Using the Confluent Cloud Console¶
Step 1: Launch your Confluent Cloud cluster¶
To create and launch a Kafka cluster in Confluent Cloud, see Create a kafka cluster in Confluent Cloud.
Step 2: Add a connector¶
In the left navigation menu, click Connectors. If you already have connectors in your cluster, click + Add connector.
Step 4: Enter the connector details¶
Note
- Make sure you have all your prerequisites completed.
- An asterisk ( * ) designates a required entry.
At the Redis Kafka Source Connector screen, complete the following:
Select the way you want to provide Kafka Cluster credentials. You can choose one of the following options:
- My account: This setting allows your connector to globally access everything that you have access to. With a user account, the connector uses an API key and secret to access the Kafka cluster. This option is not recommended for production.
- Service account: This setting limits the access for your connector by using a service account. This option is recommended for production.
- Use an existing API key: This setting allows you to specify an API key and a secret pair. You can use an existing pair or create a new one. This method is not recommended for production environments.
Note
Freight clusters support only service accounts for Kafka authentication.
Click Continue.
Add the following database connection details:
Connection credentials
- Redis host: The IP address or hostname of the Redis database server.
- Redis port: The port number used to connect to Redis database server.
- Redis database index: The numerical index of the Redis database you want to write data to.
- Redis username: The username of the Redis user connecting to the Redis database server.
- Redis password: The password of the Redis user connecting to the Redis database server.
TLS configuration
- Enable TLS: Specify whether to use Transport Layer Security (TLS) to connect
to the Redis database. Defaults to
false
. - Allow Insecure TLS: Specify whether to allow insecure connections (for example,
invalid certificates) to Redis server when using SSL. Defaults to
false
. - CA certificate file: If you set
Enable TLS
property totrue
, upload the CA certificate file. The connector uses a TLS-encrypted connection and verifies the server’s TLS certificate against the configured Certificate Authority (CA) certificates. You can use this with or without client certificates.
Client certificate authentication
- Private Key File: Upload the private key file in PEM format. Use this file along with the certificate file for client certificate authentication.
- Certificate File: Upload the certificate file in PEM format. Use this file along with the private key file for client certificate authentication.
- Key password: Specify the password of the private key file if it is password-protected.
Click Continue.
Configure the following:
Output messages
- Output Kafka record value format: Sets the output Kafka record value format (data going to the Kafka topic). Valid entries are AVRO, JSON, JSON_SR (JSON Schema), PROTOBUF, STRING, or BYTES. Note that you need to have Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF.
Source configurations
- Source type: Defines the type of Redis Kafka source connector to use. Select
KEYS
to monitor Redis keyspace notifications, orSTREAM
to read from Redis Streams. - Destination topic: Specifies the name of the destination Kafka topic where the connector publishes Redis events.
- Batch size: Controls the maximum size of the batch for writing into a topic. Defaults to
100
.
Keys source settings
- Keys pattern: Specifies the keyspace glob-style pattern to subscribe to. Use
*
to subscribe to all keys. - Idle timeout: Sets the idle timeout in milliseconds. Use
0
to disable.
Stream source settings
- Stream name: Specifies the name of the Redis stream to read from.
- Stream offset: Determines the stream offset to start reading from. Use
0-0
to start from the beginning,$
to read only new messages, or a specific offset, for example1234567890-0
. - Block timeout: Sets the maximum amount of time (in milliseconds) to wait while polling for
stream messages (
XREAD [BLOCK milliseconds]
). - Delivery guarantee: Specifies the stream message delivery guarantee. Options are
at-least-once
orat-most-once
. - Consumer group: Specifies the group name of the stream consumer. The connector creates this group if it does not exist.
- Consumer name: Specifies a format string for the stream consumer, which may contain
${task}
as a placeholder for the task ID. For example,consumer-${task}
for a task ID123
will map to the consumer nameconsumer-123
.
Data encryption
- Enable Client-Side Field Level Encryption for data encryption. Specify a Service Account to access the Schema Registry and associated encryption rules or keys with that schema. For more information on CSFLE setup, see Manage CSFLE for connectors.
Show advanced configurations
Schema context: Select a schema context to use for this connector, if using a schema-based data format. This property defaults to the Default context, which configures the connector to use the default schema set up for Schema Registry in your Confluent Cloud environment. A schema context allows you to use separate schemas (like schema sub-registries) tied to topics in different Kafka clusters that share the same Schema Registry environment. For example, if you select a non-default context, a Source connector uses only that schema context to register a schema and a Sink connector uses only that schema context to read from. For more information about setting up a schema context, see What are schema contexts and when should you use them?.
Command timeout: Set the Redis command timeout in seconds. Defaults to
60
.Connection pool size: Specify the maximum number of connections in the pool. Defaults to
8
.Redis server mode: Specify whether the Redis server runs on a single node or across multiple nodes. Defaults to
Standalone
.
Additional configurations
To add an additional configuration, see Additional Connector Configuration Reference for Confluent Cloud.
Auto-restart policy
Enable Connector Auto-restart: Control the auto-restart behavior of the connector and its task in the event of user-actionable errors. Defaults to
true
, enabling the connector to automatically restart in case of user-actionable errors. Set this property tofalse
to disable auto-restart for failed connectors. In such cases, you would need to manually restart the connector.
Transforms
Single Message Transforms: To add a new SMT, see Add transforms. For more information about unsupported SMTs, see Unsupported transformations.
Processing position
Set offsets: Click Set offsets to define a specific offset for this connector to begin procession data from. For more information on managing offsets, see Manage offsets.
For all property values and definitions, see Configuration Properties.
Click Continue.
Based on the number of topic partitions you select, you will be provided with a recommended number of tasks.
- To change the number of recommended tasks, enter the number of tasks for the connector to use in the Tasks field.
- Click Continue.
Verify the connection details by previewing the running configuration.
Tip
For information about previewing your connector output, see Data Previews for Confluent Cloud Connectors.
After you’ve validated that the properties are configured to your satisfaction, click Launch.
The status for the connector should go from Provisioning to Running.
Step 5: Check the Kafka topic¶
After the connector is running, verify that Redis records are populating the Kafka topic.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.
Using the Confluent CLI¶
Complete the following steps to set up and run the connector using the Confluent CLI.
Note
Make sure you have all your prerequisites completed.
Step 1: List the available connectors¶
Enter the following command to list available connectors:
confluent connect plugin list
Step 2: List the connector configuration properties¶
Enter the following command to show the connector configuration properties:
confluent connect plugin describe <connector-plugin-name>
The command output shows the required and optional configuration properties.
Step 3: Create the connector configuration file¶
Create a JSON file that contains the connector configuration properties. The following example shows the required connector properties.
{
"connector.class": "RedisKafkaSource",
"name": "<my-connector-name>",
"kafka.auth.mode": "KAFKA_API_KEY",
"kafka.api.key": "<my-kafka-api-key>",
"kafka.api.secret": "<my-kafka-api-secret>",
"kafka.topic": "keys_source",
"redis.host": "test-18211.c90.us-east-1.ec2.redis-cloud.com",
"redis.port": "18211",
"redis.database": "0",
"redis.username": "default",
"redis.password": "********************",
"redis.tls": "false",
"source.type": "KEYS",
"keys.batch.size": "100",
"redis.timeout": "60",
"redis.pool": "8",
"redis.server.mode": "Standalone",
"redis.keys.pattern": "*",
"mode": "LIVE",
"redis.keys.timeout": "0",
"output.data.format": "AVRO",
"tasks.max": "1",
"auto.restart.on.user.error": "true"
}
Note the following property definitions:
"connector.class"
: Identifies the connector plugin name."name"
: Sets a name for your new connector.
"kafka.auth.mode"
: Identifies the connector authentication mode you want to use. There are two options:SERVICE_ACCOUNT
orKAFKA_API_KEY
(the default). To use an API key and secret, specify the configuration propertieskafka.api.key
andkafka.api.secret
, as shown in the example configuration (above). To use a service account, specify the Resource ID in the propertykafka.service.account.id=<service-account-resource-ID>
. To list the available service account resource IDs, use the following command:confluent iam service-account list
For example:
confluent iam service-account list Id | Resource ID | Name | Description +---------+-------------+-------------------+------------------- 123456 | sa-l1r23m | sa-1 | Service account 1 789101 | sa-l4d56p | sa-2 | Service account 2
"redis.host"
: The IP address or hostname of the Redis database server."redis.port"
: The port number used to connect to Redis database server."redis.tls"
: Specify whether to use Transport Layer Security (TLS) to connect to the Redis database. Defaults tofalse
."source.type"
: Defines the type of Redis Kafka source connector to use. SelectKEYS
to monitor Redis keyspace notifications, orSTREAM
to read from Redis Streams."kafka.topic"
: Specifies the name of the destination Kafka topic where the connector publishes Redis events."keys.batch.size"
: Controls the maximum size of the batch for writing into a topic. Defaults to100
. For the Stream Source connector, the property name is"stream.batch.size"
."output.data.format"
: Sets the output Kafka record value format (data coming from the connector). Valid entries areAVRO
,JSON_SR
,PROTOBUF
,JSON
,STRING
, orBYTES
. You must have Confluent Cloud Schema Registry configured if using a schema-based message format (for example, Avro, JSON_SR (JSON Schema), or Protobuf)."tasks.max"
: Enter the maximum number of tasks for the connector to use. More tasks might improve performance.Note
The Keys Source connector can be configured with only one task.
Note
(Optional) To enable CSFLE for data encryption, specify the following properties:
csfle.enabled
: Flag to indicate whether the connector honors CSFLE rules.sr.service.account.id
: A Service Account to access the Schema Registry and associated encryption rules or keys with that schema.
For more information on CSFLE setup, see Manage CSFLE for connectors.
Single Message Transforms: See the Single Message Transforms (SMT) documentation for details about adding SMTs using the CLI.
See Configuration Properties for all property values and definitions.
Step 4: Load the properties file and create the connector¶
Enter the following command to load the configuration and start the connector:
confluent connect cluster create --config-file <file-name>.json
For example:
confluent connect cluster create --config-file redis-kafka-source.json
Example output:
Created connector confluent-redis-kafka-source lcc-ix4dl
Step 5: Check the connector status¶
Enter the following command to check the connector status:
confluent connect cluster list
Example output:
ID | Name | Status | Type
+-----------+---------------------------+---------+-------+
lcc-ix4dl | confluent-redis-kafka-source | RUNNING | source
Step 6: Check the Kafka topic.¶
After the connector is running, verify that Redis documents are populating the Kafka topic.
For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.
Configuration Properties¶
Use the following configuration properties with the fully-managed connector. For self-managed connector property definitions and other details, see the connector docs in Self-managed connectors for Confluent Platform.
How should we connect to your data?¶
name
Sets a name for your connector.
- Type: string
- Valid Values: A string at most 64 characters long
- Importance: high
Which topic do you want to send data to?¶
kafka.topic
Identifies the topic name to write the data to.
- Type: string
- Importance: high
Schema Config¶
schema.context.name
Add a schema context name. A schema context represents an independent scope in Schema Registry. It is a separate sub-schema tied to topics in different Kafka clusters that share the same Schema Registry instance. If not used, the connector uses the default schema configured for Schema Registry in your Confluent Cloud environment.
- Type: string
- Default: default
- Importance: medium
Kafka Cluster credentials¶
kafka.auth.mode
Kafka Authentication mode. It can be one of KAFKA_API_KEY or SERVICE_ACCOUNT. It defaults to KAFKA_API_KEY mode.
- Type: string
- Default: KAFKA_API_KEY
- Valid Values: KAFKA_API_KEY, SERVICE_ACCOUNT
- Importance: high
kafka.api.key
Kafka API Key. Required when kafka.auth.mode==KAFKA_API_KEY.
- Type: password
- Importance: high
kafka.service.account.id
The Service Account that will be used to generate the API keys to communicate with Kafka Cluster.
- Type: string
- Importance: high
kafka.api.secret
Secret associated with Kafka API key. Required when kafka.auth.mode==KAFKA_API_KEY.
- Type: password
- Importance: high
Redis connection¶
redis.host
The hostname of Redis server to connect to.
- Type: string
- Importance: high
redis.port
The port number of Redis server to connect to.
- Type: string
- Importance: high
redis.database
The database index to write to.
- Type: int
- Default: 0
- Importance: medium
redis.username
The username of the Redis user connecting to the Redis database server.
- Type: string
- Importance: medium
redis.password
The password of the Redis user connecting to the Redis database server.
- Type: password
- Importance: medium
Redis security¶
redis.tls
Establish a secure TLS connection to Redis.
- Type: boolean
- Default: false
- Importance: medium
redis.cacert
X.509 CA certificate file to verify with. Use this with or without client certificates.
- Type: password
- Importance: medium
Redis client certificate auth¶
redis.key.file
Private key file (PEM format) to authenticate with. Use this file along with the certificate file for client certificate authentication.
- Type: password
- Importance: medium
redis.key.cert
X.509 certificate chain file (PEM format) to authenticate with. Use this file along with the private key file for client certificate authentication.
- Type: password
- Importance: medium
redis.key.password
Password of the private key file. Leave empty if key file is not password-protected.
- Type: password
- Importance: medium
Source configuration¶
source.type
Type of Redis source connector. Select
KEYS
to monitor Redis keyspace notifications, orSTREAM
to read from Redis Streams.- Type: string
- Default: KEYS
- Importance: high
keys.batch.size
Number of records to process in each batch for writing into a topic.
- Type: int
- Default: 100
- Valid Values: [1,…,10000]
- Importance: medium
stream.batch.size
Number of records to process in each batch for writing into a topic.
- Type: int
- Default: 100
- Valid Values: [1,…,10000]
- Importance: medium
redis.timeout
Redis command timeout in seconds.
- Type: long
- Default: 60
- Valid Values: [1,…,3600]
- Importance: medium
redis.pool
Maximum number of connections in the pool in the range of 1 to 100.
- Type: int
- Default: 8
- Valid Values: [1,…,100]
- Importance: medium
redis.server.mode
Whether redis server is running on one or multiple nodes.
- Type: string
- Default: Standalone
- Importance: medium
Output messages¶
output.data.format
Sets the output Kafka record value format. Valid entries are AVRO, JSON_SR or PROTOBUF. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF
- Type: string
- Default: JSON_SR
- Importance: high
Keys source configuration¶
redis.keys.pattern
Keyspace glob-style pattern to subscribe to. Use
*
to subscribe to all keys.- Type: string
- Default: *
- Importance: medium
mode
Use
LIVE
for snapshot + updates,LIVEONLY
for just updates.- Type: string
- Default: LIVE
- Importance: high
redis.keys.timeout
Idle timeout in milliseconds. Use
0
to disable.- Type: long
- Default: 0
- Valid Values: [0,…,3600000]
- Importance: low
Stream source configuration¶
redis.stream.name
Name of the Redis stream to read from.
- Type: string
- Importance: high
redis.stream.offset
Stream offset to start reading from. Use
0-0
to start from the beginning,$
to read only new messages, or a specific offset like1234567890-0
.- Type: string
- Default: 0-0
- Importance: medium
redis.stream.block
The maximum amount of time in milliseconds to wait while polling for stream messages (XREAD [BLOCK milliseconds]).
- Type: long
- Default: 100
- Valid Values: [0,…,60000]
- Importance: low
redis.stream.delivery
Stream message delivery guarantee. The valid options are
at-least-once
orat-most-once
.- Type: string
- Default: at-least-once
- Importance: medium
redis.stream.consumer.group
Stream consumer group name. This group will be created if it doesn’t exist.
- Type: string
- Default: kafka-consumer-group
- Importance: high
redis.stream.consumer.name
A format string for the stream consumer, which may contain ‘${task}’ as a placeholder for the task id. For example, ‘consumer-${task}’ for the task id ‘123’ will map to the consumer name ‘consumer-123’.
- Type: string
- Default: consumer-${task}
- Importance: medium
Number of tasks for this connector¶
tasks.max
Maximum number of tasks for the connector.
- Type: int
- Default: 1
- Importance: high
Additional Configs¶
header.converter
The converter class for the headers. This is used to serialize and deserialize the headers of the messages.
- Type: string
- Importance: low
producer.override.compression.type
The compression type for all data generated by the producer. Valid values are none, gzip, snappy, lz4, and zstd.
- Type: string
- Importance: low
producer.override.linger.ms
The producer groups together any records that arrive in between request transmissions into a single batched request. More details can be found in the documentation: https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#linger-ms.
- Type: long
- Valid Values: [100,…,1000]
- Importance: low
value.converter.allow.optional.map.keys
Allow optional string map key when converting from Connect Schema to Avro Schema. Applicable for Avro Converters.
- Type: boolean
- Importance: low
value.converter.auto.register.schemas
Specify if the Serializer should attempt to register the Schema.
- Type: boolean
- Importance: low
value.converter.connect.meta.data
Allow the Connect converter to add its metadata to the output schema. Applicable for Avro Converters.
- Type: boolean
- Importance: low
value.converter.enhanced.avro.schema.support
Enable enhanced schema support to preserve package information and Enums. Applicable for Avro Converters.
- Type: boolean
- Importance: low
value.converter.enhanced.protobuf.schema.support
Enable enhanced schema support to preserve package information. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.flatten.unions
Whether to flatten unions (oneofs). Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.generate.index.for.unions
Whether to generate an index suffix for unions. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.generate.struct.for.nulls
Whether to generate a struct variable for null values. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.int.for.enums
Whether to represent enums as integers. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.latest.compatibility.strict
Verify latest subject version is backward compatible when use.latest.version is true.
- Type: boolean
- Importance: low
value.converter.object.additional.properties
Whether to allow additional properties for object schemas. Applicable for JSON_SR Converters.
- Type: boolean
- Importance: low
value.converter.optional.for.nullables
Whether nullable fields should be specified with an optional label. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.optional.for.proto2
Whether proto2 optionals are supported. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.scrub.invalid.names
Whether to scrub invalid names by replacing invalid characters with valid characters. Applicable for Avro and Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.use.latest.version
Use latest version of schema in subject for serialization when auto.register.schemas is false.
- Type: boolean
- Importance: low
value.converter.use.optional.for.nonrequired
Whether to set non-required properties to be optional. Applicable for JSON_SR Converters.
- Type: boolean
- Importance: low
value.converter.wrapper.for.nullables
Whether nullable fields should use primitive wrapper messages. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
value.converter.wrapper.for.raw.primitives
Whether a wrapper message should be interpreted as a raw primitive at root level. Applicable for Protobuf Converters.
- Type: boolean
- Importance: low
errors.tolerance
Use this property if you would like to configure the connector’s error handling behavior. WARNING: This property should be used with CAUTION for SOURCE CONNECTORS as it may lead to dataloss. If you set this property to ‘all’, the connector will not fail on errant records, but will instead log them (and send to DLQ for Sink Connectors) and continue processing. If you set this property to ‘none’, the connector task will fail on errant records.
- Type: string
- Default: none
- Importance: low
key.converter.key.subject.name.strategy
How to construct the subject name for key schema registration.
- Type: string
- Default: TopicNameStrategy
- Importance: low
value.converter.decimal.format
Specify the JSON/JSON_SR serialization format for Connect DECIMAL logical type values with two allowed literals:
BASE64 to serialize DECIMAL logical types as base64 encoded binary data and
NUMERIC to serialize Connect DECIMAL logical type values in JSON/JSON_SR as a number representing the decimal value.
- Type: string
- Default: BASE64
- Importance: low
value.converter.flatten.singleton.unions
Whether to flatten singleton unions. Applicable for Avro and JSON_SR Converters.
- Type: boolean
- Default: false
- Importance: low
value.converter.ignore.default.for.nullables
When set to true, this property ensures that the corresponding record in Kafka is NULL, instead of showing the default column value. Applicable for AVRO,PROTOBUF and JSON_SR Converters.
- Type: boolean
- Default: false
- Importance: low
value.converter.reference.subject.name.strategy
Set the subject reference name strategy for value. Valid entries are DefaultReferenceSubjectNameStrategy or QualifiedReferenceSubjectNameStrategy. Note that the subject reference name strategy can be selected only for PROTOBUF format with the default strategy being DefaultReferenceSubjectNameStrategy.
- Type: string
- Default: DefaultReferenceSubjectNameStrategy
- Importance: low
value.converter.replace.null.with.default
Whether to replace fields that have a default value and that are null to the default value. When set to true, the default value is used, otherwise null is used. Applicable for JSON Converter.
- Type: boolean
- Default: true
- Importance: low
value.converter.schemas.enable
Include schemas within each of the serialized values. Input messages must contain schema and payload fields and may not contain additional fields. For plain JSON data, set this to false. Applicable for JSON Converter.
- Type: boolean
- Default: false
- Importance: low
value.converter.value.subject.name.strategy
Determines how to construct the subject name under which the value schema is registered with Schema Registry.
- Type: string
- Default: TopicNameStrategy
- Importance: low
Auto-restart policy¶
auto.restart.on.user.error
Enable connector to automatically restart on user-actionable errors.
- Type: boolean
- Default: true
- Importance: medium
Next Steps¶
For an example that shows fully-managed Confluent Cloud connectors in action with Confluent Cloud for Apache Flink, see the Cloud ETL Demo. This example also shows how to use Confluent CLI to manage your resources in Confluent Cloud.