Configure Authorization with Confluent Operator

Role-based Access Control

This guide walks you through an end-to-end setup of role-based access control (RBAC) for Confluent Platform with Operator. Note that there are many ways you can modify this process for your own use cases and environments.

Note

  • Currently, RBAC with Operator is available for new installations.
  • Operator does not support central management of RBAC across multiple Kafka clusters.

The examples in this guide use the following assumptions:

  • $VALUES_FILE refers to the configuration file you set up in Create the global configuration file.

  • To present simple and clear examples in the Operator documentation, all the configuration parameters are specified in the config file ($VALUES_FILE). However, in your production deployments, use the --set or --set-file option when applying sensitive data with Helm. For example:

    helm upgrade --install kafka \
     --set kafka.services.mds.ldap.authentication.simple.principal=”cn=mds,dc=test,dc=com” \
     --set kafka.services.mds.ldap.authentication.simple.credentials=”Developer!” \
     --set kafka.enabled=true
    
  • operator is the namespace that Confluent Platform is deployed in.

  • All commands are executed in the helm directory under the directory Confluent Operator was downloaded to.

Following assumptions are made specific to the examples used in this guide:

  • You have created the LDAP user/password for an example user who will be able to log into Control Center and successfully view all Confluent Platform components: user testadmin with password testadmin
  • You have created the LDAP user/password for a user who has a minimum of LDAP read-only permissions to allow Metadata Service (MDS) to query LDAP about other users: user mds with password Developer!
  • You have created the following LDAP users/passwords for all Confluent Platform components.
    • Kafka: kafka/kafka-secret
    • Confluent REST API: erp/erp-secret
    • Confluent Control Center: c3/c3-secret
    • ksqlDB: ksql/ksql-secret
    • Schema Registry: sr/sr-secret
    • Replicator: replicator/replicator-secret
    • Connect: connect/connect-secret
  • You defined a super user for bootstrapping RBAC within Confluent Platform: kafka.
  • You are familiar with the concepts and use cases of the Confluent Platform RBAC feature, as described in Authorization using Role-Based Access Control.

The summary of the configuration and deployment process is:

  1. Enable and set the required fields in the Confluent Operator configuration file ($VALUES_FILE).
  2. Deploy Confluent Operator, ZooKeeper, and Kafka.
  3. Add the required role bindings for Confluent Platform components: Schema Registry, Connect, Replicator, ksqlDB, and Control Center.
  4. Deploy Confluent Platform components.

Requirements

The following are the requirements for enabling and using RBAC with Operator:

  • You must have an LDAP server that Confluent Platform can use for authentication.

  • Confluent REST API is automatically enabled for RBAC and cannot be disabled when RBAC is enabled.

    Use the Kafka bootstrap endpoint (same as the MDS endpoint) to access Confluent REST API.

  • You must create a user for Confluent REST API in LDAP and provide the username and password as described in Kafka configuration.

  • You must provide a valid Schema Registry license as described in Add a license key.

Global configuration

In your Operator configuration file ($VALUES_FILE), set the following:

global:
  authorization:
    superUsers:
    - User:kafka
    rbac:
      enabled: true                 ----- [1]
  dependencies:
    mds:
      endpoint:                     ----- [2]
      publicKey: |-                 ----- [3]
        -----BEGIN PUBLIC KEY-----
        ...
        -----END PUBLIC KEY-----
  • [1] Set enabled: true to enable RBAC.

  • [2] Set endpoint to the Kafka bootstrap endpoint as below. For load balancer and Ingress with host-based routing, <kafka-bootstrap-host> is derived from the bootstrap prefix and the domain. For others, you provide <kafka-bootstrap-host>.

    • To internally access MDS over HTTP: http://<kafka_name>.svc.cluster.local:8091
    • To internally access MDS over HTTPS: https://<kafka_name>.svc.cluster.local:8090
    • To externally access MDS using Load Balancer: http(s)://<kafka_bootstrap_host>:9092
    • To externally access MDS using NodePort: http(s)://<kafka_bootstrap_host>:<portOffset+1>
    • To externally access MDS using Ingress with host-based routing: https://<kafka_bootstrap_host>:8090
    • To externally access MDS using Ingress with port-based routing: http(s)://<kafka_bootstrap_host>:<portOffset+1>

    This endpoint is also used to access Confluent REST API.

  • [3] See Create a PEM key pair for details on creating a public-private key pair.

Kafka configuration

In the Confluent Operator configuration file ($VALUES_FILE), set the following values for Kafka:

kafka:
  services:
    restProxy:
      authentication:
        username:                                            ----- [1]
        password:                                            ----- [2]
   password: ""
    mds:
      https:                                                 ----- [3]
      tokenKeyPair: |-                                       ----- [4]
        ----- BEGIN RSA PRIVATE KEY -----
        ...
        ----- END RSA PRIVATE KEY -----
      ldap:
        address: ldaps://ldap.operator.svc.cluster.local:636 ----- [5]
        authentication:
          simple:                                            ----- [6]
            principal: cn=mds,dc=test,dc=com
            credentials: Developer!
        configurations:                                      ----- [7]
          groupNameAttribute: cn
          groupObjectClass: group
          groupMemberAttribute: member
          groupMemberAttributePattern: CN=(.*),DC=test,DC=com
          groupSearchBase: dc=test,dc=com
          userNameAttribute: cn
          userMemberOfAttributePattern: CN=(.*),DC=test,DC=com
          userObjectClass: organizationalRole
          userSearchBase: dc=test,dc=com
  tls:
    enabled: true
    internalTLS: true                                       ----- [8]
    authentication:
      principalMappingRules:                                ----- [9]
      - RULE:^CN=([a-zA-Z0-9.]*).*$/$1/L
      - DEFAULT
    cacerts: |-
  • [1] Set username to the Confluent REST API user you set up in LDAP.
  • [2] Set password to the password of the user specified in [1].
  • [3] Set https: true if you want MDS to serve HTTPS traffic.
  • [4] Set tokenKeyPair to a PEM-encoded RSA key pair that MDS can use for signing tokens. These are required for token authentication between Confluent Platform components. See Create a PEM key pair for details on creating a public-private key pair.
  • [5] address is the URL for the LDAP server Confluent Platform uses for authentication. If you provide a secure LDAPS URL, kafka.tls.cacerts must be configured to allow MDS to trust the certificate presented by your LDAP server.
  • [6] principal and credentials are used by MDS to authenticate itself with the LDAP server.
  • [7] configurations should be configured according to your LDAP settings.
  • [8] When using NodePort or Ingress service for external access, set internalTLS: true.
  • [9] For mTLS (kafka.tls.authentication.type: tls), the principal is retrieved from the certificate, and the user must be in the LDAP. For details about using principal mapping rules, see Principal Mapping Rules for SSL Listeners (Extract a Principal from a Certificate)

Configure RBAC and Ingress with host-based routing

You need to provide additional configuration information when you enable RBAC with the Ingress with host-based routing.

To configure Kafka with RBAC and external access using Ingress with host-based routing, perform the following steps:

  1. Configure and deploy Kafka as described in Kafka configuration.

  2. Install an Ingress controller.

    When externally exposing RBAC-enabled Kafka, you need to deploy an Ingress controller for each Kafka broker and the bootstrap server because MDS requires a unique URL for each Kafka service. For example, the following commands install NGINX controller for three Kafka brokers and a bootstrap services:

    helm upgrade --install ingress-with-sni stable/nginx-ingress \
      --set rbac.create=true \
      --set controller.publishService.enabled=true \
      --set controller.extraArgs.enable-ssl-passthrough="true" \
      --set tcp.8090="operator/kafka-bootstrap:8090"
    
    helm upgrade --install ingress-with-sni-0 stable/nginx-ingress \
      --set rbac.create=true \
      --set controller.publishService.enabled=true \
      --set controller.extraArgs.enable-ssl-passthrough="true" \
      --set tcp.8090="operator/kafka-0-internal:8090"
    
    helm upgrade --install ingress-with-sni-1 stable/nginx-ingress \
      --set rbac.create=true \
      --set controller.publishService.enabled=true \
      --set controller.extraArgs.enable-ssl-passthrough="true" \
      --set tcp.8090="operator/kafka-1-internal:8090"
    
    helm upgrade --install ingress-with-sni-2 stable/nginx-ingress \
      --set rbac.create=true \
      --set controller.publishService.enabled=true \
      --set controller.extraArgs.enable-ssl-passthrough="true" \
      --set tcp.8090="operator/kafka-2-internal:8090"
    
  3. Create a bootstrap service of the ClusterIP type with the MDS port in addition to the external port.

    For example:

    1. Create the bootstrap.yaml file with the following:

      apiVersion: v1
      kind: Service
      metadata:
        name: kafka-bootstrap
        namespace: operator
        labels:
          app: kafka-bootstrap
      spec:
        ports:
          - name: external
            port: 9092
            protocol: TCP
            targetPort: 9092
      selector:
        physicalstatefulcluster.core.confluent.cloud/name: kafka
        physicalstatefulcluster.core.confluent.cloud/version: v1
      type: ClusterIP
      
    2. Run the following command to create a bootstrap service with the above settings:

      kubectl apply -f bootstrap.yaml -n <namespace>
      
  4. Add the MDS ports to the Ingress resource for all the brokers and the bootstrap services.

    For example:

    1. Create ingress-resource.yaml for an Ingress resource for NGINX Ingress controller to expose a Kafka bootstrap service and three brokers. The domain name is mydevplatform.gcp.cloud and bootstrap prefix/brokerPrefix/port are set with the default values. The rules apply to the Kafka brokers and bootstrap service hosts specified.

      apiVersion: extensions/v1beta1
      kind: Ingress
      metadata:
        name: ingress-with-sni
        annotations:
          nginx.ingress.kubernetes.io/ssl-passthrough: "true"
          kubernetes.io/ingress.class: nginx
          nginx.ingress.kubernetes.io/ssl-redirect: "false"
          ingress.kubernetes.io/ssl-passthrough: "true"
          nginx.ingress.kubernetes.io/backend-protocol: HTTPS
      spec:
        tls:
          - hosts:
              - b0.platformops.dev.gcp.devel.cpdev.cloud
              - b1.platformops.dev.gcp.devel.cpdev.cloud
              - b2.platformops.dev.gcp.devel.cpdev.cloud
              - kafka.platformops.dev.gcp.devel.cpdev.cloud
        rules:
          - host: kafka.platformops.dev.gcp.devel.cpdev.cloud
            http:
              paths:
                - backend:
                    serviceName: kafka-bootstrap
                    servicePort: 9092
                - backend:
                    serviceName: kafka-bootstrap
                    servicePort: 8090
          - host: b0.platformops.dev.gcp.devel.cpdev.cloud
            http:
              paths:
                - backend:
                    serviceName: kafka-0-internal
                    servicePort: 9092
                - backend:
                    serviceName: kafka-0-internal
                    servicePort: 8090
          - host: b1.platformops.dev.gcp.devel.cpdev.cloud
            http:
              paths:
                - backend:
                    serviceName: kafka-1-internal
                    servicePort: 9092
                - backend:
                    serviceName: kafka-1-internal
                    servicePort: 8090
          - host: b2.platformops.dev.gcp.devel.cpdev.cloud
            http:
              paths:
                - backend:
                    serviceName: kafka-2-internal
                    servicePort: 9092
                - backend:
                    serviceName: kafka-2-internal
                    servicePort: 8090
      
    2. Run the following command to create an Ingress resource with the above settings:

      kubectl apply -f ingress-resource.yaml -n <namespace>
      

Configure RBAC and Ingress with port-based routing

You need to provide additional configuration information when you enable RBAC with the Ingress with port-based routing.

To configure Kafka with RBAC and external access using Ingress with port-based routing, perform the following steps:

Note: If you want MDS to serve HTTP traffic instead of HTTPS, replace the port 8090 with 8091.

  1. Configure and deploy Kafka as described in Kafka configuration.

  2. Install an Ingress controller with additional MDS ports mapped.

    For example, the following command installs the NGINX controller using Helm:

    helm install <release name>  stable/nginx-ingress --set controller.ingressClass=kafka \
      --set tcp.9093="operator/kafka-bootstrap:9092" \
      --set tcp.9095="operator/kafka-0-internal:9092" \
      --set tcp.9097="operator/kafka-1-internal:9092" \
      --set tcp.9099="operator/kafka-2-internal:9092" \
      --set tcp.9094="operator/kafka-bootstrap:8090" \
      --set tcp.9096="operator/kafka-0-internal:8090" \
      --set tcp.9098="operator/kafka-1-internal:8090" \
      --set tcp.9100="operator/kafka-2-internal:8090"
    
  3. Create a bootstrap service with the MDS port.

    For example:

    1. Create the bootstrap.yaml file with the following:

      apiVersion: v1
      kind: Service
      metadata:
        name: kafka-bootstrap
        namespace: operator
       labels:
       app: kafka-bootstrap
      spec:
        ports:
        - name: external
          port: 9092
          protocol: TCP
          targetPort: 9092
        - name: metadata
          port: 8090
          protocol: TCP
          targetPort: 8090
        selector:
          physicalstatefulcluster.core.confluent.cloud/name: kafka
          physicalstatefulcluster.core.confluent.cloud/version: v1
        type: ClusterIP
      
    2. Run the following command to create an Ingress resource with the above settings:

      kubectl apply -f bootstrap.yaml -n <namespace>
      
  4. Add MDS ports in the Ingress resource for all the brokers and the bootstrap services.

    For example:

    1. Create ingress-resource.yaml for an Ingress resource for NGINX Ingress controller to expose a Kafka bootstrap service and three brokers. The domain name is mydevplatform.gcp.cloud and bootstrap prefix/brokerPrefix/port are set with the default values. The rules apply to the Kafka brokers and bootstrap hosts specified.

      apiVersion: networking.k8s.io/v1beta1
        kind: Ingress
        metadata:
          name: <ingress resource name>
          annotations:
            kubernetes.io/ingress.class: nginx
            nginx.ingress.kubernetes.io/rewrite-target: /
        spec:
          rules:
            - host: <host name>
              http:
                paths:
                  - path:
                    backend:
                      serviceName: kafka-bootstrap
                      servicePort: 9092
                  - path:
                    backend:
                      serviceName: kafka-0-internal
                      servicePort: 9092
                  - path:
                    backend:
                      serviceName: kafka-1-internal
                      servicePort: 9092
                  - path:
                    backend:
                      serviceName: kafka-2-internal
                      servicePort: 9092
                  - path:
                    backend:
                      serviceName: kafka-bootstrap
                      servicePort: 8090
                  - path:
                    backend:
                      serviceName: kafka-0-internal
                      servicePort: 8090
                  - path:
                    backend:
                      serviceName: kafka-1-internal
                      servicePort: 8090
                  - path:
                    backend:
                      serviceName: kafka-2-internal
                      servicePort: 8090
      
    2. Run the following command to create an Ingress resource:

      kubectl apply -f ingress-resource.yaml -n <namespace>
      

Confluent Platform component configuration

In the Confluent Operator configuration file ($VALUES_FILE), set the following values for each Confluent Platform component.

<component>:
  dependencies:
    mds:
      authentication:
        username:
        password:

The usernames and passwords must be already set on your LDAP server, as described in the assumptions.

If you do not want to enter this sensitive data into your $VALUES_FILE, use the --set flag when applying the configuration with the helm upgrade --install command for each Confluent Platform component.

Deploy Kafka with Metadata Service (MDS)

With MDS now configured, deploy Kafka components in the following order as described in Install Confluent Operator and Confluent Platform:

  1. Operator
  2. ZooKeeper
  3. Kafka

Verify MDS configuration

Log into MDS to verify the correct configuration and to get the Kafka cluster ID. You need the Kafka cluster ID for component role bindings.

Replace https://<kafka_bootstrap_endpoint> in the below commands with the value you set in your config file ($VALUES_FILE) for global.dependencies.mds.endpoint.

  1. Log into MDS as the Kafka super user as below:

    confluent login \
     --url https://<kafka_bootstrap_endpoint> \
     --ca-cert-path <path-to-cacerts.pem>
    

    You need to pass the --ca-cert-path flag if:

    • You have configured MDS to serve HTTPS traffic (kafka.services.mds.https: true) in Kafka configuration.
    • The CA used to issue the MDS certificates is not trusted by system where you are running these commands.

    Provide the Kafka username and password when prompted, in this example, kafka and kafka-secret.

    You get a response to confirm a successful login.

  2. Verify that the advertised listeners are correctly configured using the following command:

    curl -ik \
     -u '<kafka-user>:<kafka-user-password>' \
     https://<kafka_bootstrap_endpoint>/security/1.0/activenodes/https
    
  3. Get the Kafka cluster ID using one of the following commands:

    confluent cluster describe --url https://<kafka_bootstrap_endpoint>
    
    curl -ik \
     https://<kafka_bootstrap_endpoint>/v1/metadata/id
    

    For the examples in the remainder of this topic, save the output Kafka ID from the above commands as an environment variable, $KAFKA_ID.

Grant roles to Confluent Platform component principals

This section walks you through the workflow to create role bindings so that Confluent Platform components are deployed and function correctly.

Log into MDS as described in the first step in Verify MDS configuration, and run the confluent iam rolebinding commands as specified in the following sections.

Set the --principal option to User:<component-ldap-user> using the component LDAP users. The commands in this section use the example component users listed in the assumptions.

Schema Registry role binding

Grant the required roles to the Schema Registry user to deploy the Schema Registry service.

Set --schema-registry-cluster-id to id_schemaregistry_operator, or more generally to id_<SR-component-name>_<namespace> where <SR-component-name> is the value of schemaregistry.name in your config file ($VALUES_FILE), and <namespace> is the Kubernetes namespace where you want to deploy Schema Registry.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:sr \
  --role SecurityAdmin \
  --schema-registry-cluster-id id_schemaregistry_operator

Set --resource to Group:id_schemaregistry_operator, or more generally to Group:id_<SR-component-name>_<namespace>.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:sr \
  --role ResourceOwner \
  --resource Group:id_schemaregistry_operator

Set --resource to Topic:_schemas_schemaregistry_operator, or more generally to Topic:_schemas_<SR-component-name>_<namespace>.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:sr \
  --role ResourceOwner \
  --resource Topic:_schemas_schemaregistry_operator
confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:sr \
  --role ResourceOwner  \
  --resource Topic:_confluent-license

Kafka Connect role binding

Grant the required roles to the Connect user to deploy the Connect service.

Set --connect-cluster-id to id_connect_operator, or more generally to id_<Connect-component-name>_<namespace> where <Connect-component-name> is the value of connect.name in your config file ($VALUES_FILE), and <namespace> is the Kubernetes namespace where you want to deploy Connect.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:connect \
  --role SecurityAdmin \
  --connect-cluster-id id_connect_operator

Set --resource to Group:operator.connectors, or more generally to <namespace>.<Connect-component-name>.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:connect \
  --role ResourceOwner \
  --resource Group:operator.connectors
confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:connect \
  --role DeveloperWrite \
  --resource Topic:_confluent-monitoring \
  --prefix

Set --resource to Topic:operator.connectors-, or more generally to <namespace>.<Connect-component-name>-.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:connect \
  --role ResourceOwner \
  --resource Topic:operator.connectors- \
  --prefix

Confluent Replicator role binding

Grant the required roles to the Replicator user to deploy the Replicator service.

Set --resource to Group:operator.replicator, or more generally to <namespace>.<Replicator-component-name> where <Replicator-component-name> is the value of replicator.name in your config file ($VALUES_FILE), and <namespace> is the Kubernetes namespace where you want to deploy Replicator.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:replicator \
  --role ResourceOwner \
  --resource Group:operator.replicator
confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:replicator \
  --role DeveloperWrite \
  --resource Topic:_confluent-monitoring \
  --prefix

Set --resource to Topic:operator.replicator-, or more generally to <namespace>.<Replicator-component-name>- where <Replicator-component-name> is the value of replicator.name in your config file ($VALUES_FILE), and <namespace> is the Kubernetes namespace where you want to deploy Replicator.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:replicator \
  --role ResourceOwner \
  --resource Topic:operator.replicator- \
  --prefix

ksqlDB role binding

Grant the required roles to the ksqlDB user to deploy the ksqlDB service.

Set --ksql-cluster-id to operator.ksql_, or more generally to <namespace>.<ksqldb-component-name>_ where <ksql-component-name> is the value of ksql.name in your config file ($VALUES_FILE), and <namespace> is the Kubernetes namespace to which you want to deploy ksqlDB.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:ksql \
  --role ResourceOwner \
  --ksql-cluster-id operator.ksql_ \
  --resource KsqlCluster:ksql-cluster
confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --principal User:ksql \
  --role ResourceOwner \
  --resource Topic:_confluent-ksql-operator.ksql_ \
  --prefix

Confluent Control Center role binding

Grant the required roles to the Control Center user to deploy the Control Center service.

confluent iam rolebinding create \
  --principal User:c3 \
  --role SystemAdmin \
  --kafka-cluster-id $KAFKA_ID

Deploy the remaining Confluent Platform components

After granting roles to the various Confluent Platform components, you can successfully deploy those components with Confluent Operator, and the components can be authorized to communicate with each other as necessary.

Follow Install Confluent Operator and Confluent Platform to deploy the rest of Confluent Platform.

Grant roles to the Confluent Control Center user to be able to administer Confluent Platform

Control Center users require separate roles for each Confluent Platform component and resource they wish to view and administer in the Control Center UI. Grant explicit permissions to the users as shown below.

In the following examples, the testadmin principal is used as a Control Center UI user.

Since there’s no access given to testadmin yet, this user will be able to log into Confluent Control Center, but nothing will be visible until the appropriate permissions are granted as described in the following sections.

Grant permission to view and administer the Kafka cluster

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --role ClusterAdmin \
  --principal User:testadmin

Grant permission to view and administer Schema Registry information

Set --schema-registry-cluster-id using the pattern: id_.<Schema-Registry-component-name>_<namespace>. The following example uses id_schemaregistry_operator.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --schema-registry-cluster-id id_schemaregistry_operator \
  --principal User:testadmin \
  --role SystemAdmin

Grant permission to view and administer the Connect cluster

Set --connect-cluster-id using the pattern: <namespace>.<Connect-component-name>. The following example uses operator.connectors.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --connect-cluster-id operator.connectors \
  --principal User:testadmin \
  --role SystemAdmin

Grant permission to view and administer the Replicator cluster

Set --connect-cluster-id using the pattern: <namespace>.<Connect-component-name>. You need the Connect cluster ID for Replicator role binding because Replicator runs in the Connect clusters. The following example uses operator.connectors.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --connect-cluster-id operator.replicator \
  --principal User:testadmin \
  --role SystemAdmin

Grant permission to view and administer the ksqlDB cluster

Set --ksql-cluster-id using the pattern: <namespace>.<ksqldb-component-name>_. The following example uses operator.ksql_.

confluent iam rolebinding create \
  --kafka-cluster-id $KAFKA_ID \
  --ksql-cluster-id operator.ksql_ \
  --resource KsqlCluster:ksql-cluster \
  --principal User:testadmin \
  --role ResourceOwner

Access Control Lists

To deploy Kafka with the Access Control Lists (ACLs) authorization, specify the settings in your configuration file ($VALUES_FILE).

The following settings are the recommended way to configure Confluent Platform to use ACLs for authorization.

global:
  authorization:
    simple:
      enabled: true
    superUsers:
    - User:test

The following settings are still supported for backward compatibility. If you enable ACLs using both the configurations above and the configurations below, the above configuration take precedence.

kafka:
  options:
    acl:
      enabled: true
      # Value for super.users server property in the format, User:UserName;
      supers: "User:test"

Note

Any changes to options:acl:supers: triggers a Kafka cluster rolling upgrade.

Both examples above configure a superuser test that all Confluent Platform components use when communicating with the Kafka cluster. This is required so that components can create internal topics.

mTLS authentication with ACLs enabled

When mTLS authentication is enabled, Confluent Platform determines the identity of the authenticated principal via data extracted from the client certificate. The Subject section of the certificate is will be used to determine the username. For example, for the following certificate’s subject (C=US, ST=CA, L=Palo Alto), the username will be extracted as User:L=Palo Alto,ST=CA,C=US.

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            omitted...
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=US, ST=Palo Alto, L=CA, O=Company, OU=Engineering, CN=TestCA
        Validity
            Not Before: Mar 28 16:37:00 2019 GMT
            Not After : Mar 26 16:37:00 2024 GMT
        Subject: C=US, ST=CA, L=Palo Alto
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:

User:ANONYMOUS is the default user for internal clients and inter-broker communication.

When Kafka is configured with mTLS authentication, in addition to User:ANONYMOUS, the cert user name is required.

Typically, you will have many different users and clients of Confluent Platform. In some cases, you may have shared client certificates across multiple users/clients, but the best practice is to issue unique client certificates for each user and certificate, and each certificate should have a unique subject/username. For each user/client, you must decide what they should be authorized to access within Confluent Platform, and ensure that the corresponding ACLs have been created for the subject/username of their corresponding client certificates. Follow the instructions in Authorization using ACLs to enable ACL authorization for Kafka objects.