Configuration Reference for HDFS 2 Sink Connector for Confluent Platform
To use this connector, specify the name of the connector class in the
connector.class configuration property.
connector.class=io.confluent.connect.hdfs.HdfsSinkConnector
Connector-specific configuration properties are described below.
HDFS
hdfs.urlThe HDFS connection URL. This configuration has the format of hdfs://hostname:port and specifies the HDFS to export data to. This property is deprecated and will be removed in future releases. Use
store.urlinstead.Type: string
Default: null
Importance: high
hadoop.conf.dirThe Hadoop configuration directory.
Type: string
Default: “”
Importance: high
hadoop.homeThe Hadoop home directory.
Type: string
Default: “”
Importance: high
logs.dirTop level directory to store the write ahead logs. Supports
${topic}in the value, which will be replaced by the actual topic name. Supports${0}, …,${n}in conjunction withtopic.capture.groups.regex. For details, seetopic.capture.groups.regexconfiguration documentation.Type: string
Default: logs
Importance: high
Security
hdfs.authentication.kerberosConfiguration indicating whether HDFS is using Kerberos for authentication.
Type: boolean
Default: false
Importance: high
Dependents:
connect.hdfs.principal,connect.hdfs.keytab,hdfs.namenode.principal,kerberos.ticket.renew.period.ms
connect.hdfs.principalThe principal name to load from the keytab for Kerberos authentication.
Type: string
Default: “”
Importance: high
connect.hdfs.keytabThe path to the keytab file for the HDFS connector principal. This keytab file should only be readable by the connector user.
Type: string
Default: “”
Importance: high
hdfs.namenode.principalThe Kerberos principal name for the HDFS Namenode. The format is
nn/_HOST@REALM.TLD.Type: string
Default: “”
Importance: high
kerberos.ticket.renew.period.msThe period in milliseconds to renew the Kerberos ticket.
Type: long
Default: 3600000 (1 hour)
Importance: low
Connector
format.classThe format class to use when writing data to the store. Format classes implement the
io.confluent.connect.storage.format.Formatinterface.Type: class
Default:
io.confluent.connect.hdfs.avro.AvroFormatImportance: high
These classes are available by default:
io.confluent.connect.hdfs.avro.AvroFormatio.confluent.connect.hdfs.json.JsonFormatio.confluent.connect.hdfs.orc.OrcFormatio.confluent.connect.hdfs.parquet.ParquetFormatio.confluent.connect.hdfs.string.StringFormat
flush.sizeNumber of records written to store before invoking file commits.
Type: int
Importance: high
Important
Rotation strategy logic: In the following rotation strategies, the logic to flush files to storage is triggered when a new record arrives, after the defined interval or scheduled interval time. Flushing files is also triggered periodically by the
offset.flush.interval.mssetting defined in the Connect worker configuration. Theoffset.flush.interval.mssetting defaults to 60000 ms (60 seconds). If you enable the propertiesrotate.interval.msorrotate.schedule.interval.msand ingestion rate is low, you should setoffset.flush.interval.msto a smaller value so that records flush at the rotation interval (or close to the interval) . Leaving theoffset.flush.interval.msset to the default 60 seconds may cause records to stay in an open file for longer than expected, if no new records get processed that trigger rotation.rotate.interval.msThe time interval in milliseconds to invoke file commits. This configuration ensures that file commits are invoked every configured interval. This configuration is useful when data ingestion rate is low and the connector didn’t write enough messages to commit files. The default value -1 means that this feature is disabled.
Type: long
Default: -1
Importance: high
rotate.schedule.interval.msThe time interval in milliseconds to periodically invoke file commits. This configuration ensures that file commits are invoked every configured interval. Time of commit will be adjusted to 00:00 of selected timezone. Commit will be performed at scheduled time regardless previous commit time or number of messages. This configuration is useful when you have to commit your data based on current server time, like at the beginning of every hour. The default value -1 means that this feature is disabled.
Type: long
Default: -1
Importance: medium
The following Avro converter properties can be used in the connector configuration:
schemas.cache.configThe size of the schema cache used in the Avro converter.
Type: int
Default: 1000
Importance: low
enhanced.avro.schema.supportEnable enhanced Avro schema support in the Avro Converter. When set to
true, this property preserves Avro schema package information and Enums when going from Avro schema to Connect schema. This information is added back in when going from Connect schema to Avro schema.Type: boolean
Default: true
Importance: low
connect.meta.dataAllow the Connect converter to add its metadata to the output schema.
Type: boolean
Default: true
Importance: low
The
connect.meta.dataproperty preserves the following Connect schema metadata when going from Connect schema to Avro schema. The following metadata is added back in when going from Avro schema to Connect schema.doc
version
parameters
default value
name
type
For detailed information and configuration examples for Avro converters listed above, see Using Kafka Connect with Schema Registry.
retry.backoff.msThe retry backoff in milliseconds. This config is used to notify Connect to retry delivering a message batch or performing recovery in case of transient exceptions.
Type: long
Default: 5000 (5 seconds)
Importance: low
shutdown.timeout.msClean shutdown timeout. This makes sure that asynchronous Hive metastore updates are completed during connector shutdown.
Type: long
Default: 3000 (3 seconds)
Importance: medium
filename.offset.zero.pad.widthWidth to zero-pad offsets in store’s filenames if offsets are too short in order to provide fixed-width filenames that can be ordered by simple lexicographic sorting.
Type: int
Default: 10
Valid Values: [0,…]
Importance: low
avro.codecThe Avro compression codec to be used for output files. Available values: null, deflate, snappy and bzip2 (Codec source is org.apache.avro.file.CodecFactory).
Type: string
Default: null
Valid Values: [null, deflate, snappy, bzip2]
Importance: low
parquet.codecThe Parquet compression codec to be used for output files.
Type: string
Default: snappy
Valid Values: [none, snappy, gzip, brotli, lz4, lzo, zstd]
Importance: low
Storage
storage.classThe underlying storage layer.
Type: class
Default: io.confluent.connect.hdfs.storage.HdfsStorage
Importance: high
topics.dirTop level directory to store the data ingested from Apache Kafka®. Supports
${topic}in the value, which will be replaced by the actual topic name. Supports${0}, …,${n}in conjunction withtopic.capture.groups.regex. For details, seetopic.capture.groups.regexconfiguration documentation.Type: string
Default: topics
Importance: high
store.urlStore’s connection URL, if applicable. For example:
hdfs://hostname:port.Type: string
Default: null
Importance: high
directory.delimDirectory delimiter pattern
Type: string
Default: /
Importance: medium
topic.capture.groups.regexA Java Pattern regex that matches the entire topic and captures values for substituting into
topics.dir. Indexed capture groups are accessible with${n}, where${0}refers to the whole match and${1}refers to the first capture group. Example config value of([a-zA-Z]*)_([a-zA-Z]*)will match topics that are two words delimited by an underscore and will capture each word separately. Withtopic.dir = ${1}/${2}, a record from the topicexample_namewill be written into a subdirectory ofexample/name/. By default, this functionality is not enabled.Type: string
Default: null
Importance: low
Partitioner
partitioner.classThe partitioner to use when writing data to the store. The following partitioners are available:
DefaultPartitionerpreserves the Kafka partitions.DailyPartitionerpartitions data according to date.HourlyPartitionerpartitions data according to hour.FieldPartitionerpartitions the data to different directories according to the value of the partitioning field specified inpartition.field.name.TimeBasedPartitionerpartitions data according to ingestion time.
Type: class
Default: io.confluent.connect.storage.partitioner.DefaultPartitioner
Importance: high
Dependents:
partition.field.name,partition.duration.ms,path.format,locale,timezone
partition.field.nameThe name of the partitioning field when
FieldPartitioneris used. You can enter multiple partitioning field names using comma-separated names.Type: list
Default: “”
Importance: medium
partition.duration.msThe duration of a partition milliseconds used by
TimeBasedPartitioner. The default value -1 means that we are not usingTimeBasedPartitioner.Type: long
Default: -1
Importance: medium
path.formatThis configuration is used to set the format of the data directories when partitioning with
TimeBasedPartitioner. The format set in this configuration converts the Unix timestamp to proper directories strings. For example, if you setpath.format='year'=YYYY/'month'=MM/'day'=dd/'hour'=HH, the data directories will have the format/year=2015/month=12/day=07/hour=15/.Type: string
Default: “”
Importance: medium
localeThe locale to use when partitioning with
TimeBasedPartitioner. Used to format dates and times. For example, useen-USfor US English,en-GBfor UK English, orfr-FRfor French (in France). These may vary by Java version. See the available locales.Type: string
Default: “”
Importance: medium
timezoneThe timezone to use when partitioning with
TimeBasedPartitioner. Used to format and compute dates and times. All timezone IDs must be specified in the long format, such asAmerica/Los_Angeles,America/New_York, andEurope/Paris, orUTC. Alternatively a locale independent, fixed offset, datetime zone can be specified in form[+-]hh:mm. Support for these timezones may vary by Java version. See the available timezones within each locale, such as those within the US English locale.Type: string
Default: “”
Valid Values: Any timezone accepted by: class
org.joda.time.DateTimeZoneImportance: medium
timestamp.extractorThe extractor that gets the timestamp for records when partitioning with
TimeBasedPartitioner. It can be set toWallclock,RecordorRecordFieldin order to use one of the built-in timestamp extractors or be given the fully-qualified class name of a user-defined class that extends theTimestampExtractorinterface.Type: string
Default: Wallclock
Importance: medium
timestamp.fieldThe record field to be used as timestamp by the timestamp extractor.
Type: string
Default: timestamp
Importance: medium
Hive
hive.integrationConfiguration indicating whether to integrate with Hive when running the connector.
Type: boolean
Default: false
Importance: high
Dependents:
hive.metastore.uris,hive.conf.dir,hive.home,hive.database
hive.metastore.urisThe Hive metastore URIs, can be IP address or fully-qualified domain name and port of the metastore host.
Type: string
Default: “”
Importance: high
hive.conf.dirHive configuration directory
Type: string
Default: “”
Importance: high
hive.homeHive home directory.
Type: string
Default: “”
Importance: high
hive.databaseThe database to use when the connector creates tables in Hive.
Type: string
Default: default
Importance: high
hive.table.nameThe hive table name to use. It must contain
${topic}to inject the corresponding topic name.Type: string
Default: “${topic}”
Importance: low
Schema
schema.compatibilityThe schema compatibility rule to use when the connector is observing schema changes. The supported configurations are NONE, BACKWARD, FORWARD and FULL.
Type: string
Default: NONE
Importance: high