public class StreamsBuilder
extends java.lang.Object
StreamsBuilder
provide the high-level Kafka Streams DSL to specify a Kafka Streams topology.Topology
,
KStream
,
KTable
,
GlobalKTable
Constructor and Description |
---|
StreamsBuilder() |
Modifier and Type | Method and Description |
---|---|
StreamsBuilder |
addGlobalStore(StoreBuilder storeBuilder,
java.lang.String topic,
Consumed consumed,
ProcessorSupplier stateUpdateSupplier)
Adds a global
StateStore to the topology. |
StreamsBuilder |
addGlobalStore(StoreBuilder storeBuilder,
java.lang.String topic,
java.lang.String sourceName,
Consumed consumed,
java.lang.String processorName,
ProcessorSupplier stateUpdateSupplier)
Deprecated.
|
StreamsBuilder |
addStateStore(StoreBuilder builder)
Adds a state store to the underlying
Topology . |
Topology |
build()
Returns the
Topology that represents the specified processing logic. |
<K,V> GlobalKTable<K,V> |
globalTable(java.lang.String topic)
Create a
GlobalKTable for the specified topic. |
<K,V> GlobalKTable<K,V> |
globalTable(java.lang.String topic,
Consumed<K,V> consumed)
Create a
GlobalKTable for the specified topic. |
<K,V> GlobalKTable<K,V> |
globalTable(java.lang.String topic,
Consumed<K,V> consumed,
Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Create a
GlobalKTable for the specified topic. |
<K,V> GlobalKTable<K,V> |
globalTable(java.lang.String topic,
Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Create a
GlobalKTable for the specified topic. |
<K,V> KStream<K,V> |
stream(java.util.Collection<java.lang.String> topics)
Create a
KStream from the specified topics. |
<K,V> KStream<K,V> |
stream(java.util.Collection<java.lang.String> topics,
Consumed<K,V> consumed)
Create a
KStream from the specified topics. |
<K,V> KStream<K,V> |
stream(java.util.regex.Pattern topicPattern)
Create a
KStream from the specified topic pattern. |
<K,V> KStream<K,V> |
stream(java.util.regex.Pattern topicPattern,
Consumed<K,V> consumed)
Create a
KStream from the specified topic pattern. |
<K,V> KStream<K,V> |
stream(java.lang.String topic)
Create a
KStream from the specified topics. |
<K,V> KStream<K,V> |
stream(java.lang.String topic,
Consumed<K,V> consumed)
Create a
KStream from the specified topics. |
<K,V> KTable<K,V> |
table(java.lang.String topic)
Create a
KTable for the specified topic. |
<K,V> KTable<K,V> |
table(java.lang.String topic,
Consumed<K,V> consumed)
Create a
KTable for the specified topic. |
<K,V> KTable<K,V> |
table(java.lang.String topic,
Consumed<K,V> consumed,
Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Create a
KTable for the specified topic. |
<K,V> KTable<K,V> |
table(java.lang.String topic,
Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Create a
KTable for the specified topic. |
public <K,V> KStream<K,V> stream(java.lang.String topic)
KStream
from the specified topics.
The default "auto.offset.reset"
strategy, default TimestampExtractor
, and default key and value
deserializers as specified in the config
are used.
If multiple topics are specified there is no ordering guarantee for records from different topics.
Note that the specified input topics must be partitioned by key.
If this is not the case it is the user's responsibility to repartition the data before any key based operation
(like aggregation or join) is applied to the returned KStream
.
topic
- the topic name; cannot be null
KStream
for the specified topicspublic <K,V> KStream<K,V> stream(java.lang.String topic, Consumed<K,V> consumed)
KStream
from the specified topics.
The "auto.offset.reset"
strategy, TimestampExtractor
, key and value deserializers
are defined by the options in Consumed
are used.
Note that the specified input topics must be partitioned by key.
If this is not the case it is the user's responsibility to repartition the data before any key based operation
(like aggregation or join) is applied to the returned KStream
.
public <K,V> KStream<K,V> stream(java.util.Collection<java.lang.String> topics)
KStream
from the specified topics.
The default "auto.offset.reset"
strategy, default TimestampExtractor
, and default key and value
deserializers as specified in the config
are used.
If multiple topics are specified there is no ordering guarantee for records from different topics.
Note that the specified input topics must be partitioned by key.
If this is not the case it is the user's responsibility to repartition the data before any key based operation
(like aggregation or join) is applied to the returned KStream
.
topics
- the topic names; must contain at least one topic nameKStream
for the specified topicspublic <K,V> KStream<K,V> stream(java.util.Collection<java.lang.String> topics, Consumed<K,V> consumed)
KStream
from the specified topics.
The "auto.offset.reset"
strategy, TimestampExtractor
, key and value deserializers
are defined by the options in Consumed
are used.
If multiple topics are specified there is no ordering guarantee for records from different topics.
Note that the specified input topics must be partitioned by key.
If this is not the case it is the user's responsibility to repartition the data before any key based operation
(like aggregation or join) is applied to the returned KStream
.
public <K,V> KStream<K,V> stream(java.util.regex.Pattern topicPattern)
KStream
from the specified topic pattern.
The default "auto.offset.reset"
strategy, default TimestampExtractor
, and default key and value
deserializers as specified in the config
are used.
If multiple topics are matched by the specified pattern, the created KStream
will read data from all of
them and there is no ordering guarantee between records from different topics.
Note that the specified input topics must be partitioned by key.
If this is not the case it is the user's responsibility to repartition the data before any key based operation
(like aggregation or join) is applied to the returned KStream
.
topicPattern
- the pattern to match for topic namesKStream
for topics matching the regex pattern.public <K,V> KStream<K,V> stream(java.util.regex.Pattern topicPattern, Consumed<K,V> consumed)
KStream
from the specified topic pattern.
The "auto.offset.reset"
strategy, TimestampExtractor
, key and value deserializers
are defined by the options in Consumed
are used.
If multiple topics are matched by the specified pattern, the created KStream
will read data from all of
them and there is no ordering guarantee between records from different topics.
Note that the specified input topics must be partitioned by key.
If this is not the case it is the user's responsibility to repartition the data before any key based operation
(like aggregation or join) is applied to the returned KStream
.
public <K,V> KTable<K,V> table(java.lang.String topic, Consumed<K,V> consumed, Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
KTable
for the specified topic.
The "auto.offset.reset"
strategy, TimestampExtractor
, key and value deserializers
are defined by the options in Consumed
are used.
Input records
with null
key will be dropped.
Note that the specified input topic must be partitioned by key.
If this is not the case the returned KTable
will be corrupted.
The resulting KTable
will be materialized in a local KeyValueStore
using the given
Materialized
instance.
However, no internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
You should only specify serdes in the Consumed
instance as these will also be used to overwrite the
serdes in Materialized
, i.e.,
streamBuilder.table(topic, Consumed.with(Serde.String(), Serde.String(), Materialized.<String, String, KeyValueStore<Bytes, byte[]>as(storeName))
To query the local KeyValueStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ...
ReadOnlyKeyValueStore<String, Long> localStore = streams.store(queryableStoreName, QueryableStoreTypes.<String, Long>keyValueStore());
String key = "some-key";
Long valueForKey = localStore.get(key); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.allMetadata()
to
query the value of the key on a parallel running instance of your Kafka Streams application.topic
- the topic name; cannot be null
consumed
- the instance of Consumed
used to define optional parameters; cannot be null
materialized
- the instance of Materialized
used to materialize a state store; cannot be null
KTable
for the specified topicpublic <K,V> KTable<K,V> table(java.lang.String topic)
KTable
for the specified topic.
The default "auto.offset.reset"
strategy and default key and value deserializers as specified in the
config
are used.
Input records
with null
key will be dropped.
Note that the specified input topics must be partitioned by key.
If this is not the case the returned KTable
will be corrupted.
The resulting KTable
will be materialized in a local KeyValueStore
with an internal
store name. Note that store name may not be queriable through Interactive Queries.
No internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
topic
- the topic name; cannot be null
KTable
for the specified topicpublic <K,V> KTable<K,V> table(java.lang.String topic, Consumed<K,V> consumed)
KTable
for the specified topic.
The "auto.offset.reset"
strategy, TimestampExtractor
, key and value deserializers
are defined by the options in Consumed
are used.
Input records
with null
key will be dropped.
Note that the specified input topics must be partitioned by key.
If this is not the case the returned KTable
will be corrupted.
The resulting KTable
will be materialized in a local KeyValueStore
with an internal
store name. Note that store name may not be queriable through Interactive Queries.
No internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
public <K,V> KTable<K,V> table(java.lang.String topic, Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
KTable
for the specified topic.
The default "auto.offset.reset"
strategy as specified in the config
are used.
Key and value deserializers as defined by the options in Materialized
are used.
Input records
with null
key will be dropped.
Note that the specified input topics must be partitioned by key.
If this is not the case the returned KTable
will be corrupted.
The resulting KTable
will be materialized in a local KeyValueStore
using the Materialized
instance.
No internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
topic
- the topic name; cannot be null
materialized
- the instance of Materialized
used to materialize a state store; cannot be null
KTable
for the specified topicpublic <K,V> GlobalKTable<K,V> globalTable(java.lang.String topic, Consumed<K,V> consumed)
GlobalKTable
for the specified topic.
Input records
with null
key will be dropped.
The resulting GlobalKTable
will be materialized in a local KeyValueStore
with an internal
store name. Note that store name may not be queriable through Interactive Queries.
No internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
Note that GlobalKTable
always applies "auto.offset.reset"
strategy "earliest"
regardless of the specified value in StreamsConfig
or Consumed
.
topic
- the topic name; cannot be null
consumed
- the instance of Consumed
used to define optional parametersGlobalKTable
for the specified topicpublic <K,V> GlobalKTable<K,V> globalTable(java.lang.String topic)
GlobalKTable
for the specified topic.
The default key and value deserializers as specified in the config
are used.
Input records
with null
key will be dropped.
The resulting GlobalKTable
will be materialized in a local KeyValueStore
with an internal
store name. Note that store name may not be queriable through Interactive Queries.
No internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
Note that GlobalKTable
always applies "auto.offset.reset"
strategy "earliest"
regardless of the specified value in StreamsConfig
.
topic
- the topic name; cannot be null
GlobalKTable
for the specified topicpublic <K,V> GlobalKTable<K,V> globalTable(java.lang.String topic, Consumed<K,V> consumed, Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
GlobalKTable
for the specified topic.
Input KeyValue
pairs with null
key will be dropped.
The resulting GlobalKTable
will be materialized in a local KeyValueStore
configured with
the provided instance of Materialized
.
However, no internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
You should only specify serdes in the Consumed
instance as these will also be used to overwrite the
serdes in Materialized
, i.e.,
streamBuilder.globalTable(topic, Consumed.with(Serde.String(), Serde.String(), Materialized.<String, String, KeyValueStore<Bytes, byte[]>as(storeName))
To query the local KeyValueStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ...
ReadOnlyKeyValueStore<String, Long> localStore = streams.store(queryableStoreName, QueryableStoreTypes.<String, Long>keyValueStore());
String key = "some-key";
Long valueForKey = localStore.get(key);
Note that GlobalKTable
always applies "auto.offset.reset"
strategy "earliest"
regardless of the specified value in StreamsConfig
or Consumed
.topic
- the topic name; cannot be null
consumed
- the instance of Consumed
used to define optional parameters; can't be null
materialized
- the instance of Materialized
used to materialize a state store; cannot be null
GlobalKTable
for the specified topicpublic <K,V> GlobalKTable<K,V> globalTable(java.lang.String topic, Materialized<K,V,KeyValueStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
GlobalKTable
for the specified topic.
Input KeyValue
pairs with null
key will be dropped.
The resulting GlobalKTable
will be materialized in a local KeyValueStore
configured with
the provided instance of Materialized
.
However, no internal changelog topic is created since the original input topic can be used for recovery (cf.
methods of KGroupedStream
and KGroupedTable
that return a KTable
).
To query the local KeyValueStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ...
ReadOnlyKeyValueStore<String, Long> localStore = streams.store(queryableStoreName, QueryableStoreTypes.<String, Long>keyValueStore());
String key = "some-key";
Long valueForKey = localStore.get(key);
Note that GlobalKTable
always applies "auto.offset.reset"
strategy "earliest"
regardless of the specified value in StreamsConfig
.topic
- the topic name; cannot be null
materialized
- the instance of Materialized
used to materialize a state store; cannot be null
GlobalKTable
for the specified topicpublic StreamsBuilder addStateStore(StoreBuilder builder)
Topology
.builder
- the builder used to obtain this state store StateStore
instanceTopologyException
- if state store supplier is already added@Deprecated public StreamsBuilder addGlobalStore(StoreBuilder storeBuilder, java.lang.String topic, java.lang.String sourceName, Consumed consumed, java.lang.String processorName, ProcessorSupplier stateUpdateSupplier)
addGlobalStore(StoreBuilder, String, Consumed, ProcessorSupplier)
insteadpublic StreamsBuilder addGlobalStore(StoreBuilder storeBuilder, java.lang.String topic, Consumed consumed, ProcessorSupplier stateUpdateSupplier)
StateStore
to the topology.
The StateStore
sources its data from all partitions of the provided input topic.
There will be exactly one instance of this StateStore
per Kafka Streams instance.
A SourceNode
with the provided sourceName will be added to consume the data arriving from the partitions
of the input topic.
The provided ProcessorSupplier
will be used to create an ProcessorNode
that will receive all
records forwarded from the SourceNode
.
This ProcessorNode
should be used to keep the StateStore
up-to-date.
The default TimestampExtractor
as specified in the config
is used.
storeBuilder
- user defined StoreBuilder
; can't be null
topic
- the topic to source the data fromconsumed
- the instance of Consumed
used to define optional parameters; can't be null
stateUpdateSupplier
- the instance of ProcessorSupplier
TopologyException
- if the processor of state is already registered