Important

You are viewing documentation for an older version of Confluent Platform. For the latest, click here.

AppDynamics Metrics Sink Connector for Confluent Platform

The Kafka Connect AppDynamics metrics sink connector is used to export metrics from Apache Kafka® topic to AppDynamics via AppDynamics Machine Agent. The connector accepts Struct and schemaless JSON as a Kafka record’s value. The name and values fields are required. The values field refers to a metric’s values and is also expected to be a Struct object in the case when the Kafka record’s value is of type Struct and nested JSON in the case when the Kafka record’s value is of type schemaless JSON.

The input Struct or schemaless JSON object used as the record’s value should resemble the following:

{
  "name": string,
  "type": string,
  "timestamp": long,
  "dimensions":{
    "aggregatorType": string,
    ...
  },
  "values":{
    "doubleValue": double
  }
}

Note

The qualifier value AVERAGE is used by default if the aggregatorType property is not present in the dimensions struct. The possible values for aggregatorType are AVERAGE, SUM and OBSERVATION. Refer Appdynamics documentation for details.

This connector can start with one task that exports data to AppDynamics. The connector can scale by adding more tasks. Note that as more tasks are added, connector performance may be limited by AppDynamics transaction processing.

Prerequisites

The following are required to run the Kafka Connect AppDynamics connector:

Features

The AppDynamics Metrics Sink connector offers the following features:

  • Supported types for Kafka record value: The connector accepts Kafka record values as Struct type, schemaless JSON type, and JSON string type.
  • Exactly Once Delivery: The connector ensures exactly once delivery of metrics to the AppDynamics machine agent. However, exactly once delivery is not ensured if the machine agent fails while sending metrics to the AppDynamics Controller.

Supported Metrics and Schemas

The connector supports metrics of type Gauge. Kafka topics that contain these metrics must have records that adhere to the following schema.

Gauge schema

{
  "doubleValue": double
}

Record Mapping

Each Kafka record is converted to AppDynamics metric object. For example below shows the original form:

{
  "name": "sample_metric",
  "type": "gauge",
  "timestamp": 23480239402348234,
  "dimensions": {
    "aggregatorType": "AVERAGE"
  },
  "values": {
    "doubleValue": 28945
  }
}

The example below shows the converted AppDynamics metric object:

{
  "metricName": "sample_metric",
  "aggregatorType": "AVERAGE",
  "value": 28945
}

Install the AppDynamics Metrics Connector

You can install this connector by using the Confluent Hub client (recommended) or you can manually download the ZIP file.

Install the connector using Confluent Hub

Prerequisite
Confluent Hub Client must be installed. This is installed by default with Confluent Enterprise.

Navigate to your Confluent Platform installation directory and run the following command to install the latest (latest) connector version. The connector must be installed on every machine where Connect will run.

confluent-hub install confluentinc/kafka-connect-appdynamics-metrics:latest

You can install a specific version by replacing latest with a version number. For example:

confluent-hub install confluentinc/kafka-connect-appdynamics-metrics:1.1.2

Install the connector manually

Download and extract the ZIP file for your connector and then follow the manual connector installation instructions.

License

You can use this connector for a 30-day trial period without a license key.

After 30 days, this connector is available under a Confluent enterprise license. Confluent issues enterprise license keys to subscribers, along with providing enterprise-level support for Confluent Platform and your connectors. If you are a subscriber, please contact Confluent Support at support@confluent.io for more information.

See Confluent Platform license for license properties and License topic configuration for information about the license topic.

Configuration Properties

For a complete list of configuration properties for this connector, see AppDynamics Metrics Sink Connector Configuration Properties.

Quick Start

Complete the following instructions.

Note

For an example of how to get Kafka Connect connected to Confluent Cloud, see Distributed Cluster in Connect Kafka Connect to Confluent Cloud.

Preliminary setup

Prior to running the connector, set up the AppDynamics account and the Controller. Once these are configured, install and configure the Machine Agent using the following documentation:

Set the following properties in the machine agent controller-info.xml file. Use the information from the AppDynamics account and the Controller configurations.

<controller-info>
    <controller-host></controller-host>
    <controller-port></controller-port>
    <controller-ssl-enabled></controller-ssl-enabled>
    <enable-orchestration></enable-orchestration>
    <account-access-key></account-access-key>
    <account-name></account-name>
    <sim-enabled></sim-enabled>
    <application-name></application-name>
    <tier-name></tier-name>
    <node-name></node-name>
</controller-info>

To add the new connector plugin you must restart Connect. Use the Confluent CLI command to restart Connect.

Tip

The command syntax for the Confluent CLI development commands changed in 5.3.0. These commands have been moved to confluent local. For example, the syntax for confluent start is now confluent local start. For more information, see confluent local.

confluent local stop connect && confluent local start connect

Your output should resemble:

Using CONFLUENT_CURRENT: /Users/username/Sandbox/confluent-snapshots/var/confluent.NuZHxXfq
Starting zookeeper
zookeeper is [UP]
Starting kafka
kafka is [UP]
Starting schema-registry
schema-registry is [UP]
Starting kafka-rest
kafka-rest is [UP]
Starting connect
connect is [UP]

Verify that the AppDynamics plugin has been installed correctly and recognized by the plugin loader:

curl -sS localhost:8083/connector-plugins | jq '.[].class' | grep appdynamics

Example output:

"io.confluent.connect.appdynamics.metrics.AppDynamicsMetricsSinkConnector"

Sink Connector Configuration

If not running, start Confluent Platform:

confluent local start

Create a configuration file named appdynamics-metrics-sink-config.json with the following contents.

 {
  "name": "appdynamics-metrics-sink",
  "config": {
    "topics": "appdynamics-metrics-topic",
    "connector.class": "io.confluent.connect.appdynamics.metrics.AppDynamicsMetricsSinkConnector",
    "tasks.max": "1",
    "machine.agent.host": "<host>",
    "machine.agent.port": "<port>",
    "behavior.on.error": "fail",
    "confluent.topic.bootstrap.servers": "localhost:9092",
    "confluent.topic.replication.factor": "1",
    "reporter.bootstrap.servers": "localhost:9092",
    "reporter.result.topic.replication.factor": "1",
    "reporter.error.topic.replication.factor": "1",
    "key.converter": "io.confluent.connect.avro.AvroConverter",
    "key.converter.schema.registry.url": "http://localhost:8081",
    "value.converter": "io.confluent.connect.avro.AvroConverter",
    "value.converter.schema.registry.url": "http://localhost:8081"
  }
}

Note

For details about using this connector with Kafka Connect Reporter, see Connect Reporter.

Enter the following command to start the AppDynamics Metrics sink connector:

Caution

You must include a double dash (--) between the connector name and your flag. For more information, see this post.

confluent local load appdynamics-metrics-sink -- -d appdynamics-metrics-sink-config.json

Verify that the connector started by viewing the Connect worker log. Enter the following command:

confluent local log connect

Produce test data to the appdynamics-metrics-topic topic in Kafka using the Confluent CLI confluent local produce command.

  kafka-avro-console-producer \
--broker-list localhost:9092 --topic appdynamics-metrics-topic \
--property value.schema='{"name": "metric","type": "record","fields": [{"name": "name","type": "string"},{"name": "dimensions", "type": {"name": "dimensions", "type": "record", "fields": [{"name": "aggregatorType", "type":"string"}]}},{"name": "values","type": {"name": "values","type": "record","fields": [{"name":"doubleValue", "type": "double"}]}}]}'
{"name":"Custom Metrics|Tier-1|CPU-Usage", "dimensions":{"aggregatorType":"AVERAGE"},  "values":{"doubleValue":5.639623848362502}}

You can view the metrics being produced using an AppDynamics Dashboard. You can produce AVRO, schemaless JSON, and JSON String data to the Kafka topic.

When you are ready, stop Confluent services using the following command:

confluent local stop

Examples

Property-based example

Create a configuration file for the connector. This file is included with the connector in etc/kafka-connect-appdynamics-metrics/appdynamics-metrics-sink-connector.properties. This configuration is typically used for standalone workers.

name=appdynamics-metrics-sink
topics=appdynamics-metrics-topic
connector.class=io.confluent.connect.appdynamics.metrics.AppDynamicsMetricsSinkConnector
tasks.max=1
machine.agent.host=<host>
machine.agent.port=<port>
behavior.on.error=fail
confluent.topic.bootstrap.servers=localhost:9092
confluent.topic.replication.factor=1
reporter.bootstrap.servers=localhost:9092
reporter.result.topic.replication.factor=1
reporter.error.topic.replication.factor=1
key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

Note

Before starting the connector:

  • Make sure to supply the machine.agent.host, machine.agent.port and behavior.on.error properties.
  • Make sure that the machine agent is set up and the controller configurations in the <machine-agent-path>/conf/controller-info.xml file are properly set. See Preliminary setup for additional information.

Tip

For details about using this connector with Kafka Connect Reporter, see Connect Reporter.

Enter the following command to load the configuration and start the connector:

Caution

You must include a double dash (--) between the connector name and your flag. For more information, see this post.

confluent local load appdynamics-metrics-sink -- -d appdynamics-metrics-sink-connector.properties

Example output:

{
 "name": "appdynamics-metrics-sink",
 "config": {
     "connector.class": "io.confluent.connect.appdynamics.metrics.AppDynamicsMetricsSinkConnector",
     "tasks.max":"1",
     "topics":"appdynamics-metrics-topic",
     "machine.agent.host": "<host>",
     "machine.agent.port": "<port>",
     "behavior.on.error": "fail",
     "confluent.topic.bootstrap.servers":"localhost:9092",
     "confluent.topic.replication.factor":"1",
     "reporter.bootstrap.servers": "localhost:9092",
     "reporter.result.topic.replication.factor": "1",
     "reporter.error.topic.replication.factor": "1",
     "key.converter": "io.confluent.connect.avro.AvroConverter",
     "key.converter.schema.registry.url": "http://localhost:8081",
     "value.converter": "io.confluent.connect.avro.AvroConverter",
     "value.converter.schema.registry.url": "http://localhost:8081"
 },
  "tasks": []
}

REST-based example

This configuration is typically used with distributed workers. Create a JSON file named connector.json and enter all the required properties. An example of the JSON to use is provided below:

{
    "name": "appdynamics-metrics-sink",
    "config": {
        "connector.class": "io.confluent.connect.appdynamics.metrics.AppDynamicsMetricsSinkConnector",
        "tasks.max":"1",
        "topics":"appdynamics-metrics-topic",
        "machine.agent.host": "<host>",
        "machine.agent.port": "<port>",
        "behavior.on.error": "fail",
        "confluent.topic.bootstrap.servers":"localhost:9092",
        "confluent.topic.replication.factor":"1",
        "reporter.bootstrap.servers": "localhost:9092",
        "reporter.result.topic.replication.factor": "1",
        "reporter.error.topic.replication.factor": "1",
        "key.converter": "io.confluent.connect.avro.AvroConverter",
        "key.converter.schema.registry.url": "http://localhost:8081",
        "value.converter": "io.confluent.connect.avro.AvroConverter",
        "value.converter.schema.registry.url": "http://localhost:8081"
    }
}

Note

For details about using this connector with Kafka Connect Reporter, see Connect Reporter.

Use curl to post the configuration to one of the Connect workers. Change http://localhost:8083/ to the endpoint of the Connect worker.

curl -sS -X POST -H 'Content-Type: application/json' --data @connector.json http://localhost:8083/connectors

For more information, see the Kafka Connect REST API.