Important
You are viewing documentation for an older version of Confluent Platform. For the latest, click here.
Clickstream Data Analysis Pipeline Using KSQL (Docker)¶
These steps will guide you through how to setup your environment and run the clickstream analysis tutorial from a Docker container.
- Prerequisites
- Docker
- Docker version 1.11 or later is installed and running.
- Docker Compose is installed. It is installed by default with Docker for Mac and Windows.
- Docker memory resource is allocated minimally at 8 GB.
- Git
- Docker
Download the Tutorial¶
Download and start the KSQL clickstream container. This container
image is large and contains Confluent Open Source, Grafana, and Elasticsearch.
Depending on your network speed, this may take up to 10-15 minutes.
The -p
flag will forward the Grafana dashboard to port 33000 on
your local host.
docker run -p 33000:3000 -it confluentinc/ksql-clickstream-demo:4.1.0 bash
Your output should resemble:
Unable to find image 'confluentinc/ksql-clickstream-demo:4.1.0' locally
latest: Pulling from confluentinc/ksql-clickstream-demo
ad74af05f5a2: Already exists
d02e292e7b5e: Already exists
8de7f5c81ab0: Already exists
ed0b76dc2730: Already exists
cfc44fa8a002: Already exists
d9ece951ea0c: Pull complete
f26010779356: Pull complete
c9dad5440731: Pull complete
935591799d9d: Pull complete
696df0f65482: Pull complete
14fd98e52325: Pull complete
fcbeb94bace2: Pull complete
32cca4f1567d: Pull complete
5df0d25e7260: Pull complete
e16097edc4fc: Pull complete
72b33b348958: Pull complete
015da01a41b0: Pull complete
80e29f47abe0: Pull complete
Digest: sha256:f3b2b19668b851d1300f77aa8c2236a126b628b911578cc688c7e0de442c1cd3
Status: Downloaded newer image for confluentinc/ksql-clickstream-demo:latest
$
You should now be in the Docker container and the remaining steps are run from within the container.
Configure and Start Elastic, Grafana, and Confluent Platform¶
Start Elasticsearch.
/etc/init.d/elasticsearch start
Your output should resemble:
[....] Starting Elasticsearch Server:sysctl: setting key "vm.max_map_count": Read-only file system . ok
Start Grafana.
/etc/init.d/grafana-server start
Your output should resemble:
[ ok ] Starting Grafana Server:.
Start Confluent Platform.
confluent start
Your output should resemble:
Starting zookeeper zookeeper is [UP] Starting kafka kafka is [UP] Starting schema-registry schema-registry is [UP] Starting kafka-rest kafka-rest is [UP] Starting connect connect is [UP] Starting ksql-server ksql-server is [UP]
Tip
If you receive an out of memory error, see the prerequisites.
Create the Clickstream Data¶
Create the clickStream data using the ksql-datagen utility. This stream will run continuously until you terminate.
Tip: This command does not print a new line and so it might look like it’s still in the foreground. Because the process is running as a daemon, you can press return again to see the shell prompt.
ksql-datagen -daemon quickstart=clickstream format=json topic=clickstream maxInterval=100 iterations=500000
Your output should resemble:
Writing console output to /tmp/ksql-logs/ksql.out
Create the status codes using the ksql-datagen utility. This stream runs once to populate the table.
ksql-datagen quickstart=clickstream_codes format=json topic=clickstream_codes maxInterval=20 iterations=100
Your output should resemble:
200 --> ([ 200 | 'Successful' ]) 302 --> ([ 302 | 'Redirect' ]) 200 --> ([ 200 | 'Successful' ]) 406 --> ([ 406 | 'Not acceptable' ]) ...
Create a set of users using ksql-datagen utility. This stream runs once to populate the table.
ksql-datagen quickstart=clickstream_users format=json topic=clickstream_users maxInterval=10 iterations=1000
Your output should resemble:
1 --> ([ 1 | 'GlenAlan_23344' | 1424796387808 | 'Curran' | 'Lalonde' | 'Palo Alto' | 'Gold' ]) 2 --> ([ 2 | 'ArlyneW8ter' | 1433932319457 | 'Oriana' | 'Vanyard' | 'London' | 'Platinum' ]) 3 --> ([ 3 | 'akatz1022' | 1478233258664 | 'Ferd' | 'Trice' | 'Palo Alto' | 'Platinum' ]) ...
Load the Streaming Data to KSQL¶
Launch the KSQL CLI:
$ ksql
You should now be in the KSQL CLI.
=========================================== = _ __ _____ ____ _ = = | |/ // ____|/ __ \| | = = | ' /| (___ | | | | | = = | < \___ \| | | | | = = | . \ ____) | |__| | |____ = = |_|\_\_____/ \___\_\______| = = = = Streaming SQL Engine for Apache Kafka® = =========================================== Copyright 2018 Confluent Inc. CLI v4.1.3, Server v4.1.3 located at http://localhost:8088 Having trouble? Type 'help' (case-insensitive) for a rundown of how things work! ksql>
Load the
clickstream.sql
schema file that runs the tutorial app.Important: Before running this step, you must have already run ksql-datagen utility to create the clickstream data, status codes, and set of users.
RUN SCRIPT '/usr/share/doc/ksql-clickstream-demo/clickstream-schema.sql';
The output should resemble:
Message --------- ---------
Verify the data¶
Note
The following steps are optional and can be used to verify that the data was loaded properly. Otherwise, you can skip to Load and View the Clickstream Data in Grafana.
Verify that the tables are created.
list TABLES;
Your output should resemble:
Table Name | Kafka Topic | Format | Windowed ----------------------------------------------------------------------------- WEB_USERS | clickstream_users | JSON | false ERRORS_PER_MIN_ALERT | ERRORS_PER_MIN_ALERT | JSON | true USER_IP_ACTIVITY | USER_IP_ACTIVITY | JSON | true CLICKSTREAM_CODES | clickstream_codes | JSON | false PAGES_PER_MIN | PAGES_PER_MIN | JSON | true CLICK_USER_SESSIONS | CLICK_USER_SESSIONS | JSON | true ENRICHED_ERROR_CODES_COUNT | ENRICHED_ERROR_CODES_COUNT | JSON | true EVENTS_PER_MIN_MAX_AVG | EVENTS_PER_MIN_MAX_AVG | JSON | true ERRORS_PER_MIN | ERRORS_PER_MIN | JSON | true EVENTS_PER_MIN | EVENTS_PER_MIN | JSON | true
Verify that the streams are created.
list STREAMS;
Your output should resemble:
Stream Name | Kafka Topic | Format ---------------------------------------------------------------- USER_CLICKSTREAM | USER_CLICKSTREAM | JSON ENRICHED_ERROR_CODES | ENRICHED_ERROR_CODES | JSON CUSTOMER_CLICKSTREAM | CUSTOMER_CLICKSTREAM | JSON CLICKSTREAM | clickstream | JSON
Verify that data is being streamed through various tables and streams.
View clickstream data
SELECT * FROM CLICKSTREAM LIMIT 5;
Your output should resemble:
1503585407989 | 222.245.174.248 | 1503585407989 | 24/Aug/2017:07:36:47 -0700 | 233.90.225.227 | GET /site/login.html HTTP/1.1 | 407 | 19 | 4096 | Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html) 1503585407999 | 233.168.257.122 | 1503585407999 | 24/Aug/2017:07:36:47 -0700 | 233.173.215.103 | GET /site/user_status.html HTTP/1.1 | 200 | 15 | 14096 | Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html) 1503585408009 | 222.168.57.122 | 1503585408009 | 24/Aug/2017:07:36:48 -0700 | 111.249.79.93 | GET /images/track.png HTTP/1.1 | 406 | 22 | 4096 | Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html) 1503585408019 | 122.145.8.244 | 1503585408019 | 24/Aug/2017:07:36:48 -0700 | 122.249.79.233 | GET /site/user_status.html HTTP/1.1 | 404 | 6 | 4006 | Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html) 1503585408029 | 222.152.45.45 | 1503585408029 | 24/Aug/2017:07:36:48 -0700 | 222.249.79.93 | GET /images/track.png HTTP/1.1 | 200 | 29 | 14096 | Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36 LIMIT reached for the partition. Query terminated
View the events per minute
SELECT * FROM EVENTS_PER_MIN LIMIT 5;
Your output should resemble:
1521108180000 | 6 : Window{start=1521108180000 end=-} | 6 | 24 1521108180000 | 4 : Window{start=1521108180000 end=-} | 4 | 23 1521108180000 | 35 : Window{start=1521108180000 end=-} | 35 | 20 1521108180000 | 5 : Window{start=1521108180000 end=-} | 5 | 24 1521108180000 | 9 : Window{start=1521108180000 end=-} | 9 | 19 1521108180000 | 34 : Window{start=1521108180000 end=-} | 34 | 18 LIMIT reached for the partition. Query terminated
View pages per minute
SELECT * FROM PAGES_PER_MIN LIMIT 5;
Your output should resemble:
1503585475000 | 4 : Window{start=1503585475000 end=-} | 4 | 14 1503585480000 | 25 : Window{start=1503585480000 end=-} | 25 | 9 1503585480000 | 16 : Window{start=1503585480000 end=-} | 16 | 6 1503585475000 | 25 : Window{start=1503585475000 end=-} | 25 | 20 1503585480000 | 37 : Window{start=1503585480000 end=-} | 37 | 6 LIMIT reached for the partition. Query terminated
Load and View the Clickstream Data in Grafana¶
Send the KSQL tables to Elasticsearch and Grafana.
Exit the KSQL CLI with
CTRL+D
.ksql> Exiting KSQL.
Navigate to the tutorial directory in the Docker container:
cd /usr/share/doc/ksql-clickstream-demo/
Run this command to send the KSQL tables to Elasticsearch and Grafana:
./ksql-tables-to-grafana.sh
Your output should resemble:
Loading Clickstream-Demo TABLES to Confluent-Connect => Elastic => Grafana datasource Logging to: /tmp/ksql-connect.log Charting CLICK_USER_SESSIONS Charting USER_IP_ACTIVITY Charting CLICKSTREAM_STATUS_CODES Charting ENRICHED_ERROR_CODES_COUNT Charting ERRORS_PER_MIN_ALERT Charting ERRORS_PER_MIN Charting EVENTS_PER_MIN_MAX_AVG Charting EVENTS_PER_MIN Charting PAGES_PER_MIN Done
Load the dashboard into Grafana.
./clickstream-analysis-dashboard.sh
Your output should resemble:
Loading Grafana ClickStream Dashboard {"id":1,"slug":"click-stream-analysis","status":"success","uid":"VhmK8Mkik","url":"/d/VhmK8Mkik/click-stream-analysis","version":1} Navigate to: http://localhost:3000/d/VhmK8Mkik/click-stream-analysis (non-docker) or http://localhost:33000/d/VhmK8Mkik/click-stream-analysis (docker)
Open your your browser using the second url output from the previous step’s command. You can login with user ID
admin
and passwordadmin
.Important: If you already have Grafana UI open, you may need to enter the specific clickstream URL output by the previous step
This dashboard demonstrates a series of streaming functionality where the title of each panel describes the type of stream
processing required to generate the data. For example, the large chart in the middle is showing web-resource requests on a per-username basis
using a Session window - where a sessions expire after 300 seconds of inactivity. Editing the panel allows you to view the datasource - which
is named after the streams and tables captured in the clickstream-schema.sql
file.
- Things to try
- Understand how the
clickstream-schema.sql
file is structured. We use a DataGen.KafkaTopic.clickstream -> Stream -> Table (for window & analytics with group-by) -> ElasticSearch/Connect topic - Run the KSQL CLI
LIST TOPICS;
command to see where data is persisted - Run the KSQL CLI
history
command
- Understand how the
Troubleshooting¶
- Check the Data Sources page in Grafana.
- If your data source is shown, select it and scroll to the bottom and click the Save & Test button. This will indicate whether your data source is valid.