Microsoft SQL Server Sink (JDBC) Connector for Confluent Cloud

The fully-managed Microsoft SQL Server Sink connector for Confluent Cloud moves data from an Apache Kafka® topic to a Microsoft SQL Server database. It writes data from a topic in Kafka to a table in the specified Microsoft SQL Server database. Table auto-creation and limited auto-evolution are supported.

Note

Features

The Microsoft SQL Server Sink connector provides the following features:

  • Idempotent writes: The default insert.mode is INSERT. If it is configured as UPSERT, the connector will use upsert semantics rather than plain insert statements. Upsert semantics refer to atomically adding a new row or updating the existing row if there is a primary key constraint violation, which provides idempotence.
  • SSL support: Supports one-way SSL.
  • Schemas: The connector supports Avro, JSON Schema, and Protobuf input value formats. The connector supports Avro, JSON Schema, Protobuf, and String input key formats. Schema Registry must be enabled to use a Schema Registry-based format.
  • Primary key support: Supported PK modes are kafka, none, record_key, and record_value. Used in conjunction with the PK Fields property.
  • Table and column auto-creation: auto.create and auto-evolve are supported. If tables or columns are missing, they can be created automatically. Table names are created based on Kafka topic names.
  • At least once delivery: This connector guarantees that records from the Kafka topic are delivered at least once.
  • Supports multiple tasks: The connector supports running one or more tasks. More tasks may improve performance.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.

Limitations

Be sure to review the following information.

Quick Start

Use this quick start to get up and running with the Confluent Cloud Microsoft SQL Server Sink connector. The quick start provides the basics of selecting the connector and configuring it to stream events to a Microsoft SQL Server database.

Note

For configuring the Microsoft SQL Server Sink (JDBC) Connector with Azure Private Link and Confluent Cloud Egress Private Link Endpoint, follow the steps in Egress Private Link Endpoints Setup Guide: First-Party Services on Azure for Confluent Cloud.

Prerequisites
  • Kafka cluster credentials. The following lists the different ways you can provide credentials.
    • Enter an existing service account resource ID.
    • Create a Confluent Cloud service account for the connector. Make sure to review the ACL entries required in the service account documentation. Some connectors have specific ACL requirements.
    • Create a Confluent Cloud API key and secret. To create a key and secret, you can use confluent api-key create or you can autogenerate the API key and secret directly in the Cloud Console when setting up the connector.

Using the Confluent Cloud Console

Step 1: Launch your Confluent Cloud cluster

See the Quick Start for Confluent Cloud for installation instructions.

Step 2: Add a connector

In the left navigation menu, click Connectors. If you already have connectors in your cluster, click + Add connector.

Step 3: Select your connector

Click the Microsoft SQL Server Sink connector card.

Microsoft SQL Server Sink Connector Card

Step 4: Enter the connector details

Note

  • Ensure you have all your prerequisites completed.
  • An asterisk ( * ) designates a required entry.

At the Add Microsoft SQL Server Sink Connector screen, complete the following:

If you’ve already populated your Kafka topics, select the topics you want to connect from the Topics list.

To create a new topic, click +Add new topic.

Step 5: Check the results in the database

Verify that new records are being added to the Microsoft SQL Server database.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.

Tip

When you launch a connector, a Dead Letter Queue topic is automatically created. See View Connector Dead Letter Queue Errors in Confluent Cloud for details.

Using the Confluent CLI

Complete the following steps to set up and run the connector using the Confluent CLI.

Note

Make sure you have all your prerequisites completed.

Step 1: List the available connectors

Enter the following command to list available connectors:

confluent connect plugin list

Step 2: List the connector configuration properties

Enter the following command to show the connector configuration properties:

confluent connect plugin describe <connector-plugin-name>

The command output shows the required and optional configuration properties.

Step 3: Create the connector configuration file

Create a JSON file that contains the connector configuration properties. The following example shows required and optional connector properties:

{
  "topics": "sql_ratings",
  "input.data.format": "AVRO",
  "input.key.format": "AVRO",
  "connector.class": "MicrosoftSqlServerSink",
  "name": "MicrosoftSqlServerSinkConnector_0",
  "kafka.auth.mode": "KAFKA_API_KEY",
  "kafka.api.key": "****************",
  "kafka.api.secret": "****************************************************************",
  "connection.host": "connect-sqlserver-cdc.<host-id>.us-west-2.rds.amazonaws.com",
  "connection.port": "1433",
  "connection.user": "admin",
  "connection.password": "************",
  "db.name": "database-name",
  "insert.mode": "UPSERT",
  "auto.create": "true",
  "auto.evolve": "true",
  "tasks.max": "1",
  "pk.mode": "record_value",
  "pk.fields": "user_id"
}

Note the following property definitions. See the Microsoft SQL Server Sink configuration properties for additional property values and definitions.

  • "connector.class": Identifies the connector plugin name.
  • "name": Sets a name for your new connector.
  • "kafka.auth.mode": Identifies the connector authentication mode you want to use. There are two options: SERVICE_ACCOUNT or KAFKA_API_KEY (the default). To use an API key and secret, specify the configuration properties kafka.api.key and kafka.api.secret, as shown in the example configuration (above). To use a service account, specify the Resource ID in the property kafka.service.account.id=<service-account-resource-ID>. To list the available service account resource IDs, use the following command:

    confluent iam service-account list
    

    For example:

    confluent iam service-account list
    
       Id     | Resource ID |       Name        |    Description
    +---------+-------------+-------------------+-------------------
       123456 | sa-l1r23m   | sa-1              | Service account 1
       789101 | sa-l4d56p   | sa-2              | Service account 2
    
  • "input.data.format": Sets the input Kafka record value format (data coming from the Kafka topic). Valid entries are AVRO, JSON_SR (JSON Schema), or PROTOBUF. You must have Confluent Cloud Schema Registry configured if using a schema-based message format.

  • "input.key.format": Sets the input record key format (data coming from the Kafka topic). Valid entries are AVRO, JSON_SR (JSON Schema), PROTOBUF, or STRING. You must have Confluent Cloud Schema Registry configured if using a schema-based message format.

  • "delete.on.null": Whether to treat null record values as deletes. Requires pk.mode to be record_key. Defaults to false.

  • "topics": Identifies the topic name or a comma-separated list of topic names.

  • "insert.mode": Enter one of the following modes:

    • INSERT: Use the standard INSERT row function. An error occurs if the row already exists in the table.
    • UPSERT: This mode is similar to INSERT. However, if the row already exists, the UPSERT function overwrites column values with the new values provided.
  • db.timezone: Name of the time zone the connector uses when inserting time-based values. Defaults to UTC.

  • "auto.create" (tables) and "auto-evolve" (columns): (Optional) Sets whether to automatically create tables or columns if they are missing relative to the input record schema. If not entered in the configuration, both default to false.

  • "pk.mode": Supported modes are listed below:

    • kafka: Kafka coordinates are used as the primary key. Must be used with the PK Fields.
    • none: No primary keys used.
    • record_key: Fields from the record key are used. May be a primitive or a struct.
    • record_value: Fields from the Kafka record value are used. Must be a struct type.
  • "pk.fields": A list of comma-separated primary key field names. The runtime interpretation of this property depends on the pk.mode selected. Options are listed below:

    • kafka: Must be three values representing the Kafka coordinates. If left empty, the coordinates default to __connect_topic,__connect_partition,__connect_offset.
    • none: PK Fields not used.
    • record_key: If left empty, all fields from the key struct are used. Otherwise, this is used to extract the fields in the property. A single field name must be configured for a primitive key.
    • record_value: Used to extract fields from the record value. If left empty, all fields from the value struct are used.
  • "tasks.max": Maximum number of tasks the connector can run. See Confluent Cloud connector limitations for additional task information.

Single Message Transforms: See the Single Message Transforms (SMT) documentation for details about adding SMTs using the CLI.

See Configuration Properties for all property values and definitions.

Step 4: Load the configuration file and create the connector

Enter the following command to load the configuration and start the connector:

confluent connect cluster create --config-file <file-name>.json

For example:

confluent connect cluster create --config-file microsoft-sql-server-sink-config.json

Example output:

Created connector MicrosoftSqlServerSinkConnector_0 lcc-ix4dl

Step 5: Check the connector status

Enter the following command to check the connector status:

confluent connect cluster list

Example output:

ID          |       Name                         | Status  | Type
+-----------+------------------------------------+---------+------+
lcc-ix4dl   | MicrosoftSqlServerSinkConnector_0  | RUNNING | sink

Step 6: Check the results in the database.

Verify that new records are being added to the Microsoft SQL Server database.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect Usage Examples section.

Tip

When you launch a connector, a Dead Letter Queue topic is automatically created. See View Connector Dead Letter Queue Errors in Confluent Cloud for details.

Configuration Properties

Use the following configuration properties with the fully-managed connector. For self-managed connector property definitions and other details, see the connector docs in Self-managed connectors for Confluent Platform.

Which topics do you want to get data from?

topics

Identifies the topic name or a comma-separated list of topic names.

  • Type: list
  • Importance: high

Schema Config

schema.context.name

Add a schema context name. A schema context represents an independent scope in Schema Registry. It is a separate sub-schema tied to topics in different Kafka clusters that share the same Schema Registry instance. If not used, the connector uses the default schema configured for Schema Registry in your Confluent Cloud environment.

  • Type: string
  • Default: default
  • Importance: medium

Input messages

input.data.format

Sets the input Kafka record value format. Valid entries are AVRO, JSON_SR, or PROTOBUF. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF.

  • Type: string
  • Importance: high
input.key.format

Sets the input Kafka record key format. This need to be set to a proper format if using pk.mode=record_key. Valid entries are AVRO, JSON_SR, PROTOBUF, STRING. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF.

  • Type: string
  • Importance: high
delete.enabled

Whether to treat null record values as deletes. Requires pk.mode to be record_key.

  • Type: boolean
  • Default: false
  • Importance: low

How should we connect to your data?

name

Sets a name for your connector.

  • Type: string
  • Valid Values: A string at most 64 characters long
  • Importance: high

Kafka Cluster credentials

kafka.auth.mode

Kafka Authentication mode. It can be one of KAFKA_API_KEY or SERVICE_ACCOUNT. It defaults to KAFKA_API_KEY mode.

  • Type: string
  • Default: KAFKA_API_KEY
  • Valid Values: KAFKA_API_KEY, SERVICE_ACCOUNT
  • Importance: high
kafka.api.key

Kafka API Key. Required when kafka.auth.mode==KAFKA_API_KEY.

  • Type: password
  • Importance: high
kafka.service.account.id

The Service Account that will be used to generate the API keys to communicate with Kafka Cluster.

  • Type: string
  • Importance: high
kafka.api.secret

Secret associated with Kafka API key. Required when kafka.auth.mode==KAFKA_API_KEY.

  • Type: password
  • Importance: high

How should we connect to your database?

connection.host

Depending on the service environment, certain network access limitations may exist. Make sure the connector can reach your service. Do not include jdbc:xxxx:// in the connection hostname property (e.g. database-1.abc234ec2.us-west.rds.amazonaws.com).

  • Type: string
  • Importance: high
connection.port

JDBC connection port.

  • Type: int
  • Valid Values: [0,…,65535]
  • Importance: high
connection.user

JDBC connection user.

  • Type: string
  • Importance: high
connection.password

JDBC connection password.

  • Type: password
  • Importance: high
db.name

JDBC database name.

  • Type: string
  • Importance: high
ssl.mode

What SSL mode should we use to connect to your database. prefer and require allows for the connection to be encrypted but does not do certificate validation on the server. verify-ca and verify-full require a file containing SSL CA certificate to be provided. The server’s certificate will be verified to be signed by one of these authorities.`verify-ca` will verify that the server certificate is issued by a trusted CA. verify-full will verify that the server certificate is issued by a trusted CA and that the server hostname matches that in the certificate. Client authentication is not performed.

  • Type: string
  • Default: prefer
  • Importance: high
ssl.truststorefile

The trust store containing server CA certificate. Only required if using verify-ca or verify-full ssl mode.

  • Type: password
  • Default: [hidden]
  • Importance: low
ssl.truststorepassword

The trust store password containing server CA certificate. Only required if using verify-ca or verify-full ssl mode.

  • Type: password
  • Default: [hidden]
  • Importance: low

Database details

insert.mode

The insertion mode to use. INSERT uses the standard INSERT row function. An error occurs if the row already exists in the table; UPSERT mode is similar to INSERT. However, if the row already exists, the UPSERT function overwrites column values with the new values provided.

  • Type: string
  • Default: INSERT
  • Importance: high
table.name.format

A format string for the destination table name, which may contain ${topic} as a placeholder for the originating topic name.

For example, kafka_${topic} for the topic ‘orders’ will map to the table name ‘kafka_orders’.

  • Type: string
  • Default: ${topic}
  • Importance: medium
table.types

The comma-separated types of database tables to which the sink connector can write. By default this is TABLE, but any combination of TABLE and VIEW is allowed. Not all databases support writing to views, and when they do the sink connector will fail if the view definition does not match the records’ schemas (regardless of auto.evolve).

  • Type: list
  • Default: TABLE
  • Importance: low
fields.whitelist

List of comma-separated record value field names. If empty, all fields from the record value are utilized, otherwise used to filter to the desired fields.

  • Type: list
  • Importance: medium
db.timezone

Name of the JDBC timezone used in the connector when querying with time-based criteria. Defaults to UTC.

  • Type: string
  • Default: UTC
  • Importance: medium
date.timezone

Name of the JDBC timezone that should be used in the connector when inserting DATE type values. Defaults to DB_TIMEZONE that uses the timezone set for db.timzeone configuration (to maintain backward compatibility). It is recommended to set this to UTC to avoid conversion for DATE type values.

  • Type: string
  • Default: DB_TIMEZONE
  • Valid Values: DB_TIMEZONE, UTC
  • Importance: medium

Primary Key

pk.mode

The primary key mode, also refer to pk.fields documentation for interplay. Supported modes are:

none: No keys utilized.

kafka: Apache Kafka® coordinates are used as the PK.

record_value: Field(s) from the record value are used, which must be a struct.

record_key: Field(s) from the record key are used, which must be a struct.

  • Type: string
  • Valid Values: kafka, none, record_key, record_value
  • Importance: high
pk.fields

List of comma-separated primary key field names. The runtime interpretation of this config depends on the pk.mode:

none: Ignored as no fields are used as primary key in this mode.

kafka: Must be a trio representing the Kafka coordinates, defaults to __connect_topic,__connect_partition,__connect_offset if empty.

record_value: If empty, all fields from the value struct will be used, otherwise used to extract the desired fields.

  • Type: list
  • Importance: high

SQL/DDL Support

auto.create

Whether to automatically create the destination table if it is missing.

  • Type: boolean
  • Default: false
  • Importance: medium
auto.evolve

Whether to automatically add columns in the table if they are missing.

  • Type: boolean
  • Default: false
  • Importance: medium
quote.sql.identifiers

When to quote table names, column names, and other identifiers in SQL statements. For backward compatibility, the default is ‘always’.

  • Type: string
  • Default: ALWAYS
  • Valid Values: ALWAYS, NEVER
  • Importance: medium

Connection details

batch.sizes

Maximum number of rows to include in a single batch when polling for new data. This setting can be used to limit the amount of data buffered internally in the connector.

  • Type: int
  • Default: 3000
  • Valid Values: [1,…,5000]
  • Importance: low

Consumer configuration

max.poll.interval.ms

The maximum delay between subsequent consume requests to Kafka. This configuration property may be used to improve the performance of the connector, if the connector cannot send records to the sink system. Defaults to 300000 milliseconds (5 minutes).

  • Type: long
  • Default: 300000 (5 minutes)
  • Valid Values: [60000,…,1800000] for non-dedicated clusters and [60000,…] for dedicated clusters
  • Importance: low
max.poll.records

The maximum number of records to consume from Kafka in a single request. This configuration property may be used to improve the performance of the connector, if the connector cannot send records to the sink system. Defaults to 500 records.

  • Type: long
  • Default: 500
  • Valid Values: [1,…,500] for non-dedicated clusters and [1,…] for dedicated clusters
  • Importance: low

Number of tasks for this connector

tasks.max

Maximum number of tasks for the connector.

  • Type: int
  • Valid Values: [1,…]
  • Importance: high

Additional Configs

consumer.override.auto.offset.reset

Defines the behavior of the consumer when there is no committed position (which occurs when the group is first initialized) or when an offset is out of range. You can choose either to reset the position to the “earliest” offset or the “latest” offset (the default). You can also select “none” if you would rather set the initial offset yourself and you are willing to handle out of range errors manually. More details: https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#auto-offset-reset

  • Type: string
  • Importance: low
consumer.override.isolation.level

Controls how to read messages written transactionally. If set to read_committed, consumer.poll() will only return transactional messages which have been committed. If set to read_uncommitted (the default), consumer.poll() will return all messages, even transactional messages which have been aborted. Non-transactional messages will be returned unconditionally in either mode. More details: https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#isolation-level

  • Type: string
  • Importance: low
header.converter

The converter class for the headers. This is used to serialize and deserialize the headers of the messages.

  • Type: string
  • Importance: low
value.converter.allow.optional.map.keys

Allow optional string map key when converting from Connect Schema to Avro Schema. Applicable for Avro Converters.

  • Type: boolean
  • Importance: low
value.converter.auto.register.schemas

Specify if the Serializer should attempt to register the Schema.

  • Type: boolean
  • Importance: low
value.converter.connect.meta.data

Allow the Connect converter to add its metadata to the output schema. Applicable for Avro Converters.

  • Type: boolean
  • Importance: low
value.converter.enhanced.avro.schema.support

Enable enhanced schema support to preserve package information and Enums. Applicable for Avro Converters.

  • Type: boolean
  • Importance: low
value.converter.enhanced.protobuf.schema.support

Enable enhanced schema support to preserve package information. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.flatten.unions

Whether to flatten unions (oneofs). Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.generate.index.for.unions

Whether to generate an index suffix for unions. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.generate.struct.for.nulls

Whether to generate a struct variable for null values. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.int.for.enums

Whether to represent enums as integers. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.latest.compatibility.strict

Verify latest subject version is backward compatible when use.latest.version is true.

  • Type: boolean
  • Importance: low
value.converter.object.additional.properties

Whether to allow additional properties for object schemas. Applicable for JSON_SR Converters.

  • Type: boolean
  • Importance: low
value.converter.optional.for.nullables

Whether nullable fields should be specified with an optional label. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.optional.for.proto2

Whether proto2 optionals are supported. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.scrub.invalid.names

Whether to scrub invalid names by replacing invalid characters with valid characters. Applicable for Avro and Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.use.latest.version

Use latest version of schema in subject for serialization when auto.register.schemas is false.

  • Type: boolean
  • Importance: low
value.converter.use.optional.for.nonrequired

Whether to set non-required properties to be optional. Applicable for JSON_SR Converters.

  • Type: boolean
  • Importance: low
value.converter.wrapper.for.nullables

Whether nullable fields should use primitive wrapper messages. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
value.converter.wrapper.for.raw.primitives

Whether a wrapper message should be interpreted as a raw primitive at root level. Applicable for Protobuf Converters.

  • Type: boolean
  • Importance: low
errors.tolerance

Use this property if you would like to configure the connector’s error handling behavior. WARNING: This property should be used with CAUTION for SOURCE CONNECTORS as it may lead to dataloss. If you set this property to ‘all’, the connector will not fail on errant records, but will instead log them (and send to DLQ for Sink Connectors) and continue processing. If you set this property to ‘none’, the connector task will fail on errant records.

  • Type: string
  • Default: all
  • Importance: low
key.converter.key.subject.name.strategy

How to construct the subject name for key schema registration.

  • Type: string
  • Default: TopicNameStrategy
  • Importance: low
value.converter.decimal.format

Specify the JSON/JSON_SR serialization format for Connect DECIMAL logical type values with two allowed literals:

BASE64 to serialize DECIMAL logical types as base64 encoded binary data and

NUMERIC to serialize Connect DECIMAL logical type values in JSON/JSON_SR as a number representing the decimal value.

  • Type: string
  • Default: BASE64
  • Importance: low
value.converter.flatten.singleton.unions

Whether to flatten singleton unions. Applicable for Avro and JSON_SR Converters.

  • Type: boolean
  • Default: false
  • Importance: low
value.converter.ignore.default.for.nullables

When set to true, this property ensures that the corresponding record in Kafka is NULL, instead of showing the default column value. Applicable for AVRO,PROTOBUF and JSON_SR Converters.

  • Type: boolean
  • Default: false
  • Importance: low
value.converter.reference.subject.name.strategy

Set the subject reference name strategy for value. Valid entries are DefaultReferenceSubjectNameStrategy or QualifiedReferenceSubjectNameStrategy. Note that the subject reference name strategy can be selected only for PROTOBUF format with the default strategy being DefaultReferenceSubjectNameStrategy.

  • Type: string
  • Default: DefaultReferenceSubjectNameStrategy
  • Importance: low
value.converter.value.subject.name.strategy

Determines how to construct the subject name under which the value schema is registered with Schema Registry.

  • Type: string
  • Default: TopicNameStrategy
  • Importance: low

Auto-restart policy

auto.restart.on.user.error

Enable connector to automatically restart on user-actionable errors.

  • Type: boolean
  • Default: true
  • Importance: medium

Next Steps

For an example that shows fully-managed Confluent Cloud connectors in action with Confluent Cloud ksqlDB, see the Cloud ETL Demo. This example also shows how to use Confluent CLI to manage your resources in Confluent Cloud.

../_images/topology.png