GitHub Source Connector for Confluent Cloud

Note

This is a Quick Start for the managed cloud connector. If you are installing the connector locally for Confluent Platform, see GitHub Source Connector for Confluent Platform.

The Kafka Connect GitHub Source connector for Confluent Cloud is used to write metadata from GitHub to Apache Kafka®. This includes consuming real-time changes or historical data and writing these to a Kafka topic. The connector polls data from GitHub through GitHub APIs, converts data into Kafka records, and then pushes the records into a Kafka topic. Each record from GitHub is converted into one Kafka record.

Features

The GitHub Source connector provides the following features:

  • At least once delivery: The connector guarantees that records are delivered at least once to the Kafka topic.
  • API rate limit awareness: The connector stops fetching records from GitHub when the API rate limit is exceeded. Once the API rate limit resets, the connector will resume fetching records.
  • Supported data formats: The connector supports Avro, JSON Schema (JSON-SR), Protobuf, and JSON (schemaless) output formats. Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON Schema, or Protobuf). See Schema Registry Enabled Environments for additional information.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect section.

Limitations

Be sure to review the following information.

Note

Because of a GitHub API limitation, only one task per connector is supported.

GitHub Resources

The GitHub connector supports fetching records from the following resources:

  • assignees: Available assignees for the specified repositories. For more information, see the Assignees API doc.
  • collaborators: Collaborators for the specified repositories. For more information, see the Collaborators API doc.
  • issues: Issues in all GitHub states. For more information, see the Issues API doc.
  • comments: Issue comments. For more information, see the Comments API doc.
  • commits: Master branch commits (only). For more information, see the Commits API doc.
  • pull_requests: Pull Requests in all GitHub states. For more information, see the Pulls API doc.
  • releases: Release for the specified repositories. For more information, see the Releases API doc.
  • reviews: Reviews on pull requests. Reviews can only be fetched with Pull Requests. For more information, see the Pulls API doc.
  • review_comments: Review comments on pull requests. For more information, see the Pulls API doc.
  • stargazers: Stargazers for the specified repositories. For more information, see the Starring API doc.

Quick Start

Use this quick start to get up and running with the Confluent Cloud GitHub Source connector. The quick start provides the basics of selecting the connector and configuring it to stream events.

Prerequisites
  • Authorized access to a Confluent Cloud cluster on Amazon Web Services (AWS), Microsoft Azure (Azure), or Google Cloud Platform (GCP).
  • The Confluent CLI installed and configured for the cluster. See Install the Confluent CLI.
  • Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON_SR (JSON Schema), or Protobuf). See Schema Registry Enabled Environments for additional information.
  • Authorization and credentials to access the GitHub endpoint.
  • At least one Kafka topic must exist in your Confluent Cloud cluster before creating the source connector.

Using the Confluent Cloud Console

Step 1: Launch your Confluent Cloud cluster.

See the Quick Start for Confluent Cloud for installation instructions.

Step 2: Add a connector.

In the left navigation menu, click Data integration, and then click Connectors. If you already have connectors in your cluster, click + Add connector.

Step 3: Select your connector.

Click the GitHub Source connector card.

GitHub Source Connector Card

Step 4: Enter the connector details.

Note

  • Make sure you have all your prerequisites completed.
  • An asterisk ( * ) designates a required entry.

At the Add GitHub Source Connector screen, complete the following:

  1. Select the way you want to provide Kafka Cluster credentials. You can choose one of the following options:
    • Global Access: Allows your connector to access everything you have access to. With global access, connector access will be linked to your account. This option is not recommended for production.
    • Granular access: Limits the access for your connector. You will be able to manage connector access through a service account. This option is recommended for production.
    • Use an existing API key: Allows you to enter an API key and secret part you have stored. You can enter an API key and secret (or generate these in the Cloud Console).
  2. Click Continue.

Step 5: Check for records.

Verify that records are being produced at the Kafka topic.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect section.

Using the Confluent CLI

Complete the following steps to set up and run the connector using the Confluent CLI.

Note

  • Make sure you have all your prerequisites completed.
  • The example commands use Confluent CLI version 2. For more information see, Confluent CLI v2.

Step 1: List the available connectors.

Enter the following command to list available connectors:

confluent connect plugin list

Step 2: Show the required connector configuration properties.

Enter the following command to show the required connector properties:

confluent connect plugin describe <connector-catalog-name>

For example:

confluent connect plugin describe GithubSource

Example output:

Following are the required configs:
connector.class: GithubSource
name
kafka.auth.mode
kafka.api.key
kafka.api.secret
github.service.url
github.access.token
github.repositories
github.resources
output.data.format
tasks.max

Step 3: Create the connector configuration file.

Create a JSON file that contains the connector configuration properties. The following example shows the required connector properties. See Configuration Properties for additional configuration property values and descriptions.

{
  "connector.class": "GithubSource",
  "name": "GithubSource_0",
  "kafka.auth.mode": "KAFKA_API_KEY",
  "kafka.api.key": "<my-kafka-api-key>",
  "kafka.api.secret": "<my-kafka-api-secret>",
  "github.service.url": "https://api.github.com",
  "github.access.token": "*********************************",
  "github.repositories": "<owner/repo-name>",
  "github.resources": "pull_requests, reviews, review_comments",
  "output.data.format": "AVRO",
  "tasks.max": "1"
}

Note the following property definitions:

  • "connector.class": Identifies the connector plugin name.
  • "name": Sets a name for your new connector.
  • "kafka.auth.mode": Identifies the connector authentication mode you want to use. There are two options: SERVICE_ACCOUNT or KAFKA_API_KEY (the default). To use an API key and secret, specify the configuration properties kafka.api.key and kafka.api.secret, as shown in the example configuration (above). To use a service account, specify the Resource ID in the property kafka.service.account.id=<service-account-resource-ID>. To list the available service account resource IDs, use the following command:

    confluent iam service-account list
    

    For example:

    confluent iam service-account list
    
       Id     | Resource ID |       Name        |    Description
    +---------+-------------+-------------------+-------------------
       123456 | sa-l1r23m   | sa-1              | Service account 1
       789101 | sa-l4d56p   | sa-2              | Service account 2
    
  • Enter the GitHub connection details.

    • "github.service.url": The GitHub API root endpoint. The default used is https://api.github.com.
    • "github.repositories": GitHub repository or comma-separated list of repositories in the form owner/repo-name. For example, "apache/kafka, confluentinc/ksql".
    • "github.resources": One or more resources that the connector extracts and writes to Kafka. See GitHub Resources for details.
  • output.data.format": Enter an output data format (data going to the Kafka topic): AVRO, JSON_SR (JSON Schema), PROTOBUF, or JSON (schemaless). Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON_SR (JSON Schema), or Protobuf). See Schema Registry Enabled Environments for additional information.

  • "tasks.max": Enter the number of tasks to use with the connector. Because of a GitHub API limitation, only one task per connector is supported.

  1. Transforms and Predicates: See the Single Message Transforms (SMT) documentation for details.

See Configuration Properties for all property values and descriptions.

Step 4: Load the properties file and create the connector.

Enter the following command to load the configuration and start the connector:

confluent connect create --config <file-name>.json

For example:

confluent connect create --config github-source-config.json

Example output:

Created connector GithubSource_0 lcc-do6vzd

Step 5: Check the connector status.

Enter the following command to check the connector status:

confluent connect list

Example output:

ID           |             Name         | Status  | Type   | Trace
+------------+--------------------------+---------+--------+-------+
lcc-do6vzd   | GithubSource_0           | RUNNING | source |       |

Step 6: Check for records.

Verify that records are being produced at the Kafka topic.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Connect section.

Configuration Properties

Use the following configuration properties with this connector.

Note

These are properties for the managed cloud connector. If you are installing the connector locally for Confluent Platform, see GitHub Source Connector for Confluent Platform.

How should we connect to your data?

name

Sets a name for your connector.

  • Type: string
  • Valid Values: A string at most 64 characters long
  • Importance: high

Kafka Cluster credentials

kafka.auth.mode

Kafka Authentication mode. It can be one of KAFKA_API_KEY or SERVICE_ACCOUNT. It defaults to KAFKA_API_KEY mode.

  • Type: string
  • Default: KAFKA_API_KEY
  • Valid Values: KAFKA_API_KEY, SERVICE_ACCOUNT
  • Importance: high
kafka.api.key
  • Type: password
  • Importance: high
kafka.service.account.id

The Service Account that will be used to generate the API keys to communicate with Kafka Cluster.

  • Type: string
  • Importance: high
kafka.api.secret
  • Type: password
  • Importance: high

Which topic name pattern do you want to send data to?

topic.name.pattern

The pattern to use for the topic name, where the ${resourceName} literal will be replaced with each resource name.

  • Type: string
  • Default: ${resourceName}
  • Importance: high

How should we connect to GitHub?

github.service.url

GitHub API Root Endpoint. Ex: https://api.github.com

  • Type: string
  • Importance: medium
github.access.token

The supplied token will be used as the value of ‘Authorization’ header in HTTP requests.

  • Type: password
  • Importance: high
github.repositories

The GitHub repositories to read from in the form of owner/repo-name. Ex: apache/kafka, apache/superset

  • Type: list
  • Importance: high
github.resources

The resources that are to be extracted and written to Kafka.

  • Type: list
  • Importance: high
github.since

Records created or updated after this time will be processed by the connector. If left blank, the default time will be set to the time this connector is launched. Expected format is yyyy-MM-dd’T’HH:mm:ssX or yyyy-MM-dd

  • Type: string
  • Importance: high

Connection details

max.batch.size

The maximum number of records that should be returned and written to Kafka at one time.

  • Type: int
  • Default: 100
  • Importance: low
max.in.flight.requests

The maximum number of requests that may be in-flight at once.

  • Type: int
  • Default: 10
  • Importance: low
max.poll.interval.ms

The time in milliseconds between requests to fetch changed or updated entities.

  • Type: long
  • Default: 3000 (3 seconds)
  • Importance: low
request.interval.ms

The time in milliseconds to wait before checking for updated records.

  • Type: long
  • Default: 15000 (15 seconds)
  • Importance: low
max.retries

The maximum number of times to retry on errors before failing the task.

  • Type: int
  • Default: 10
  • Importance: low
retry.backoff.ms

The time in milliseconds to wait following an error before a retry attempt is made.

  • Type: long
  • Default: 3000 (3 seconds)
  • Importance: low

Output messages

output.data.format

Sets the output Kafka record value format. Valid entries are AVRO, JSON_SR, PROTOBUF, or JSON. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF

  • Type: string
  • Importance: high

Number of tasks for this connector

tasks.max
  • Type: int
  • Valid Values: [1,…]
  • Importance: high

Next Steps

See also

For an example that shows fully-managed Confluent Cloud connectors in action with Confluent Cloud ksqlDB, see the Cloud ETL Demo. This example also shows how to use Confluent CLI to manage your resources in Confluent Cloud.

../_images/topology.png