MySQL CDC Source V2 (Debezium) Connector for Confluent Cloud

The fully-managed MySQL Change Data Capture (CDC) Source V2 (Debezium) connector for Confluent Cloud can obtain a snapshot of the existing data in a MySQL database and then monitor and record all subsequent row-level changes to that data. The connector supports Avro, JSON Schema, Protobuf, or JSON (schemaless) output data formats. All of the events for each table are recorded in a separate Apache Kafka® topic. The events can then be easily consumed by applications and services.

Note

V2 Improvements

Note the following improvements made to the V2 connector.

  • Supports reading binlog entries that were written with compression enabled.
  • Supports parsing JSON_TABLE table functions.
  • Can stop or pause an in-progress incremental snapshot. Can resume the incremental snapshot if it was previously been paused.
  • Supports regular expressions to specify table names for incremental snapshots.
  • Supports SQL-based predicates to control the subset of records to be included in the incremental snapshot.
  • Supports specifying a single column as a surrogate key for performing incremental snapshots.
  • Can perform ad-hoc blocking snapshots.
  • Indices that rely on hidden, auto-generated columns, or columns wrapped in database functions are no longer considered primary key alternatives for tables that do not have a primary key defined.
  • Configuration options to specify how topic and schema names should be adjusted for compatibility.

Features

The MySQL CDC Source V2 (Debezium) connector provides the following features:

  • Topics created automatically: The connector automatically creates Kafka topics using the naming convention: <topic.prefix>.<schemaName>.<tableName>. The tables are created with the properties: topic.creation.default.partitions=1 and topic.creation.default.replication.factor=3. For more information, see Maximum message size.
  • Database authentication: Uses password authentication.
  • SSL support: Supports SSL encryption.
  • Databases included and Databases excluded: Sets whether a database is or is not monitored for changes. By default, the connector monitors every database on the server.
  • Tables included and Tables excluded: Sets whether a table is or is not monitored for changes. By default, the connector monitors every non-system table.
  • Tombstones on delete: Sets whether a tombstone event is generated after a delete event. Default is true.
  • Output formats: The connector supports Avro, JSON Schema, Protobuf, or JSON (schemaless) output Kafka record value format. It supports Avro, JSON Schema, Protobuf, JSON (schemaless), and String output record key format. Schema Registry must be enabled to use a Schema Registry-based format (for example, Avro, JSON_SR (JSON Schema), or Protobuf). See Schema Registry Enabled Environments for additional information.
  • Incremental snapshot: Supports incremental snapshotting via signaling.
  • Offset management capabilities: Supports offset management. For more information, see Manage custom offsets.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Managed and Custom Connectors section.

Supported database versions

The MySQL CDC Source V2 (Debezium) connector is compatible with the following MySQL versions: 8.0.x.

Limitations

Be sure to review the following information.

Maximum message size

This connector creates topics automatically. When it creates topics, the internal connector configuration property max.message.bytes is set to the following:

  • Basic cluster: 8 MB
  • Standard cluster: 8 MB
  • Enterprise cluster: 8 MB
  • Dedicated cluster: 20 MB

For more information about Confluent Cloud clusters, see Kafka Cluster Types in Confluent Cloud.

Log retention during snapshot

When launched, the CDC connector creates a snapshot of the existing data in the database to capture the nominated tables. To do this, the connector executes a “SELECT *” statement. Completing the snapshot can take a while if one or more of the nominated tables is very large.

During the snapshot process, the database server must retain transaction logs so that when the snapshot is complete, the CDC connector can start processing database changes that have completed since the snapshot process began. These logs are retained in a binary log (binlog) on the database server.

If one or more of the tables are very large, the snapshot process could run longer than the binlog retention time set on the database server (that is, expire_logs_days = <number-of-days>). To capture very large tables, you should temporarily retain the binlog for longer than normal by increasing the expire_logs_days value.

Manage custom offsets

Custom offsets for managed connectors is Early Access

Confluent uses Early Access releases to gather feedback. This service should be used only for evaluation and non-production testing purposes, or to provide feedback to Confluent, particularly as it becomes more widely available in follow-on preview editions.

Early Access is intended for evaluation use in development and testing environments only and not for production use. The warranty, SLA, and Support Services provisions of your agreement with Confluent do not apply to Early Access. Confluent considers Early Access to be a Proof of Concept as defined in the Confluent Cloud Terms of Service. Confluent may discontinue providing preview releases of the Early Access releases at any time at the sole discretion of Confluent.

You can manage the offsets for this connector. Offsets provide information on the point in the source system from which the connector accesses data. For more information, see Manage Offsets for Fully-Managed Connectors.

To manage offsets:

To get the current offset, make a GET request that specifies the environment, Kafka cluster, and connector name.

GET /connect/v1/environments/{environment_id}/clusters/{kafka_cluster_id}/connectors/{connector_name}/offsets
Host: https://api.confluent.cloud

Response:

Successful calls return HTTP 200 with a JSON payload that describes the offset.

{
    "id": "lcc-example123",
    "name": "{connector_name}",
    "offsets": [
        {
            "partition": {
                "server": "server_01"
            },
            "offset": {
                "event": 2,
                "file": "mysql-bin.000598",
                "pos": 2326,
                "row": 1,
                "server_id": 1,
                "transaction_id": null,
                "ts_sec": 1711648627
            }
        }
    ],
    "metadata": {
        "observed_at": "2024-03-28T17:57:48.139635200Z"
    }
}

Responses include the following information:

  • The position of latest offset.
  • The observed time of the offset in the metadata portion of the payload. The observed_at time indicates a snapshot in time for when the API retrieved the offset. A running connector is always updating its offsets. Use observed_at to get a sense for the gap between real time and the time at which the request was made. By default, offsets are observed every minute. Calling get repeatedly will fetch more recently observed offsets.
  • Information about the connector.

JSON payload

The table below offers a description of the unique fields in the JSON payload for managing offsets of the MySQL Change Data Capture (CDC) Source connector.

Field Definition Required/Optional
event The number of rows and events to skip while starting from this file and position. Use event and row together but only use these fields if you understand which rows and events to skip. For most cases, you only need to provide file and position. Optional
file The file from the last processed binlog. Use file and pos together. Required
pos The position from the last processed binlog. Use pos and file together. Required
row The number of rows and events to skip while starting from this file and position. Use event and row together but only use these fields if you understand which rows and events to skip. For most cases, you only need to provide file and position. Optional
server_id The id of the server from which the event originated. For more information, see MySQL documentation. Optional
transaction_id Mostly null, provided only when provide.transaction.metadata is set to true in the config. For more information, see Debezium Documentation. Optional
ts_sec The timestamp at which the event at this pos was executed in the database. Optional

Important

Do not reset the offset to an arbitrary number. Use only offsets found in the binlog file. To find offsets in a binlog file, use the mysqlbinlog utility. Offsets appear in this format: # at <offset>

Quick Start

Use this quick start to get up and running with the MySQL CDC Source V2 (Debezium) connector. The quick start provides the basics of selecting the connector and configuring it to obtain a snapshot of the existing data in a MySQL database and then monitoring and recording all subsequent row-level changes.

Prerequisites
  • Kafka cluster credentials. The following lists the different ways you can provide credentials.

    • Enter an existing service account resource ID.
    • Create a Confluent Cloud service account for the connector. Make sure to review the ACL entries required in the service account documentation. Some connectors have specific ACL requirements.
    • Create a Confluent Cloud API key and secret. To create a key and secret, you can use confluent api-key create or you can autogenerate the API key and secret directly in the Cloud Console when setting up the connector.
  • Update the following settings for the MySQL database.

    1. Turn on backup for the database.

    2. Create a new parameter group and set the following parameters:

      binlog_format=ROW
      binlog_row_image=full
      
    3. Apply the new parameter group to the database.

    4. Reboot the database.

    The following example screens are from Amazon RDS:

    Set database backup
    Set database binlog
    Set database binlog row image

Using the Confluent Cloud Console

Step 1: Launch your Confluent Cloud cluster

See the Quick Start for Confluent Cloud for installation instructions.

Step 2: Add a connector

In the left navigation menu, click Connectors. If you already have connectors in your cluster, click + Add connector.

Step 3: Select your connector

Click the MySQL CDC Source V2 connector card.

MySQL CDC Source V2 Connector Card

Step 4: Enter the connector details

Note

At the MySQL CDC Source V2 (Debezium) Connector screen, complete the following:

  1. Select the way you want to provide Kafka Cluster credentials. You can choose one of the following options:
    • Global Access: Allows your connector to access everything you have access to. With global access, connector access will be linked to your account. This option is not recommended for production.
    • Granular access: Limits the access for your connector. You will be able to manage connector access through a service account. This option is recommended for production.
    • Use an existing API key: Allows you to enter an API key and secret part you have stored. You can enter an API key and secret (or generate these in the Cloud Console).
  2. Click Continue.

Step 5: Check the Kafka topic

After the connector is running, verify that messages are populating your Kafka topic.

Note

A topic named dbhistory.<topic.prefix>.<connect-id> is automatically created for schema.history.internal.kafka.topic with one partition.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Managed and Custom Connectors section.

Using the Confluent CLI

Complete the following steps to set up and run the connector using the Confluent CLI.

Note

Make sure you have all your prerequisites completed.

Step 1: List the available connectors

Enter the following command to list available connectors:

confluent connect plugin list

Step 2: List the connector configuration properties

Enter the following command to show the connector configuration properties:

confluent connect plugin describe <connector-plugin-name>

The command output shows the required and optional configuration properties.

Step 3: Create the connector configuration file

Create a JSON file that contains the connector configuration properties. The following example shows the required connector properties.

{
  "connector.class": "MySqlCdcSourceV2",
  "name": "MySqlCdcSourceV2Connector_0",
  "kafka.auth.mode": "KAFKA_API_KEY",
  "kafka.api.key": "****************",
  "kafka.api.secret": "****************************************************************",
  "database.hostname": "database-2.<host-id>.us-west-2.rds.amazonaws.com",
  "database.port": "3306",
  "database.user": "admin",
  "database.password": "**********",
  "topic.prefix": "mysql",
  "table.include.list":"employees.departments,
  "output.data.format": "JSON",
  "tasks.max": "1"
}

Note the following property definitions:

  • "connector.class": Identifies the connector plugin name.
  • "name": Sets a name for your new connector.
  • "kafka.auth.mode": Identifies the connector authentication mode you want to use. There are two options: SERVICE_ACCOUNT or KAFKA_API_KEY (the default). To use an API key and secret, specify the configuration properties kafka.api.key and kafka.api.secret, as shown in the example configuration (above). To use a service account, specify the Resource ID in the property kafka.service.account.id=<service-account-resource-ID>. To list the available service account resource IDs, use the following command:

    confluent iam service-account list
    

    For example:

    confluent iam service-account list
    
       Id     | Resource ID |       Name        |    Description
    +---------+-------------+-------------------+-------------------
       123456 | sa-l1r23m   | sa-1              | Service account 1
       789101 | sa-l4d56p   | sa-2              | Service account 2
    
  • "database.hostname": IP address or hostname of the MySQL database server.

  • "database.port": Port number of the MySQL database server.

  • "database.user": The name of the MySQL database user that has the required authorization.

  • "database.password": Password of the MySQL database user that has the required authorization.

  • "topic.prefix": Provides a namespace for the particular database server/cluster that the connector is capturing changes from.

  • "table.include.list": An optional, comma-separated list of fully-qualified table identifiers for the connector to monitor. By default, the connector monitors all non-system tables. A fully-qualified table name is in the form databaseName.tableName. This property cannot be used with the property table.exclude.list.

  • "output.data.format": Sets the output Kafka record value format (data coming from the connector). Valid entries are AVRO, JSON_SR, PROTOBUF, or JSON. You must have Confluent Cloud Schema Registry configured if using a schema-based record format (for example, Avro, JSON_SR (JSON Schema), or Protobuf).

  • "tasks.max": Enter the number of tasks in use by the connector. Organizations can run multiple connectors with a limit of one task per connector (that is, "tasks.max": "1").

Single Message Transforms: See the Single Message Transforms (SMT) documentation for details about adding SMTs using the CLI. For additional information about the Debezium SMTs ExtractNewRecordState and EventRouter (Debezium), see Debezium transformations.

See Configuration Properties for all properties and definitions.

Step 4: Load the properties file and create the connector

Enter the following command to load the configuration and start the connector:

confluent connect cluster create --config-file <file-name>.json

For example:

confluent connect cluster create --config-file mysql-cdc-source-v2.json

Example output:

Created connector MySqlCdcSourceV2Connector_0 lcc-ix4dl

Step 5: Check the connector status

Enter the following command to check the connector status:

confluent connect cluster list

Example output:

ID          |            Name               | Status  |  Type
+-----------+-------------------------------+---------+-------+
lcc-ix4dl   | MySqlCdcSourceV2Connector_0   | RUNNING | source

Step 6: Check the Kafka topic.

After the connector is running, verify that messages are populating your Kafka topic.

Note

A topic named dbhistory.<topic.prefix>.<connect-id> is automatically created for schema.history.internal.kafka.topic with one partition.

For more information and examples to use with the Confluent Cloud API for Connect, see the Confluent Cloud API for Managed and Custom Connectors section.

Moving from V1 to V2

Version 2 of this connector supports new features and breaking changes that are not backward compatible with version 1 of the connector. To understand these changes and to plan for moving to version 2, see Backward Incompatible Changes in Debezium CDC V2 Connectors.

Given the backward-incompatible changes between version 1 and 2 of the CDC connectors, version 2 is being provided in a new set of CDC connectors on Confluent Cloud. You can provision either version 1 or version 2. However, note that eventually version 1 will be deprecated and no longer supported.

Before exploring your options for moving from version 1 to 2, be sure to make the required changes documented in Backward Incompatible Changes in Debezium CDC V2 Connectors.

The following lists options for moving from version 1 to 2 (v1 to v2).

  • The easiest option is to delete the existing v1 connector and then provision a v2 connector with an identical configuration, except with snapshot.mode set to initial or when_needed. This triggers a complete re-snapshotting of the capture tables. This process will take a long time for very large tables. This process can result in duplicate events in the existing change event topics. You can use a different value for topic.prefix to emit the change events to a new set of topics.
  • If you don’t mind losing a few change events, you can delete the existing v1 connector and then provision a v2 connector with an identical configuration, except with snapshot.mode set to schema_only. Since this is a new connector and there are no previously stored offsets in the Kafka offsets topic, the connector starts streaming changes from the time this connector was started. Note that changes that are not captured by the v1 connector but added to the binlog before starting the v2 connector are lost.
  • If temporarily halting writes to the database is an option, you can use the following steps to move from v1 to v2 no data loss nor duplicates.
    1. Configure every application to stop doing writes to the database, or put them into read-only mode.
    2. Give the connector enough time to capture all the change events that are written to the transaction log.
    3. Verify that the existing connector has completed consuming entries from the CDC tables by checking the last consumed message on the Kafka topic.
    4. Delete the existing v1 connector.
    5. Provision a v2 connector with similar configuration to the previous one. Set snapshot.mode to schema_only to prevent re-snapshotting.
    6. Re-configure the applications to resume the writes, or put them back into read/write mode.

Important

Implement and validate any connector changes in a pre-production environment before promoting to production.

Configuration Properties

Use the following configuration properties with the fully-managed connector. For self-managed connector property definitions and other details, see the connector docs in Self-managed connectors for Confluent Platform.

How should we connect to your data?

name

Sets a name for your connector.

  • Type: string
  • Valid Values: A string at most 64 characters long
  • Importance: high

Kafka Cluster credentials

kafka.auth.mode

Kafka Authentication mode. It can be one of KAFKA_API_KEY or SERVICE_ACCOUNT. It defaults to KAFKA_API_KEY mode.

  • Type: string
  • Default: KAFKA_API_KEY
  • Valid Values: KAFKA_API_KEY, SERVICE_ACCOUNT
  • Importance: high
kafka.api.key

Kafka API Key. Required when kafka.auth.mode==KAFKA_API_KEY.

  • Type: password
  • Importance: high
kafka.service.account.id

The Service Account that will be used to generate the API keys to communicate with Kafka Cluster.

  • Type: string
  • Importance: high
kafka.api.secret

Secret associated with Kafka API key. Required when kafka.auth.mode==KAFKA_API_KEY.

  • Type: password
  • Importance: high

How should we connect to your database?

database.hostname

IP address or hostname of the MySQL database server.

  • Type: string
  • Importance: high
database.port

Port number of the MySQL database server.

  • Type: int
  • Valid Values: [0,…,65535]
  • Importance: high
database.user

The name of the MySQL database user that has the required authorization.

  • Type: string
  • Importance: high
database.password

Password for the MySQL database user that has the required authorization.

  • Type: password
  • Importance: high
database.ssl.mode

Whether to use an encrypted connection to the MySQL server. Possible settings are: disabled, preferred, and required.

disabled specifies the use of an unencrypted connection.

preferred establishes an encrypted connection if the server supports secure connections. If the server does not support secure connections, falls back to an unencrypted connection.

required establishes an encrypted connection or fails if one cannot be made for any reason.

  • Type: string
  • Default: preferred
  • Importance: high

Output messages

output.data.format

Sets the output Kafka record value format. Valid entries are AVRO, JSON_SR, PROTOBUF, or JSON. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF

  • Type: string
  • Importance: high
output.key.format

Sets the output Kafka record key format. Valid entries are AVRO, JSON_SR, PROTOBUF, STRING or JSON. Note that you need to have Confluent Cloud Schema Registry configured if using a schema-based message format like AVRO, JSON_SR, and PROTOBUF

  • Type: string
  • Default: JSON
  • Valid Values: AVRO, JSON, JSON_SR, PROTOBUF, STRING
  • Importance: high
json.output.decimal.format

Specify the JSON/JSON_SR serialization format for Connect DECIMAL logical type values with two allowed literals:

BASE64 to serialize DECIMAL logical types as base64 encoded binary data and

NUMERIC to serialize Connect DECIMAL logical type values in JSON/JSON_SR as a number representing the decimal value.

  • Type: string
  • Default: BASE64
  • Importance: low
after.state.only

Controls whether the generated Kafka record should contain only the state of the row after the event occurred.

  • Type: boolean
  • Default: false
  • Importance: low
tombstones.on.delete

Controls whether a tombstone event should be generated after a delete event.

true - a delete operation is represented by a delete event and a subsequent tombstone event.

false - only a delete event is emitted.

After a source record is deleted, emitting the tombstone event (the default behavior) allows Kafka to completely delete all events that pertain to the key of the deleted row in case log compaction is enabled for the topic.

  • Type: boolean
  • Default: true
  • Importance: medium

How should we name your topic(s)?

topic.prefix

Topic prefix that provides a namespace (logical server name) for the particular MySQL database server or cluster in which Debezium is capturing changes. The prefix should be unique across all other connectors, since it is used as a topic name prefix for all Kafka topics that receive records from this connector. Only alphanumeric characters, hyphens, dots and underscores must be used. The connector automatically creates Kafka topics using the naming convention: <topic.prefix>.<databaseName>.<tableName>.

  • Type: string
  • Importance: high

Database config

signal.data.collection

Fully-qualified name of the data collection that needs to be used to send signals to the connector. Use the following format to specify the fully-qualified collection name: databaseName.tableName

  • Type: string
  • Importance: medium

Connector config

snapshot.mode

Specifies the criteria for running a snapshot when the connector starts. Possible settings are: initial, initial_only, when_needed, never, schema_only, schema_only_recovery.

initial - the connector runs a snapshot only when no offsets have been recorded for the logical server name.

initial_only - the connector runs a snapshot only when no offsets have been recorded for the logical server name and then stops; i.e. it will not read change events from the binlog.

when_needed - the connector runs a snapshot upon startup whenever it deems it necessary. That is, when no offsets are available, or when a previously recorded offset specifies a binlog location or GTID that is not available in the server.

never - the connector never uses snapshots. Upon first startup with a logical server name, the connector reads from the beginning of the binlog. Configure this behavior with care. It is valid only when the binlog is guaranteed to contain the entire history of the database.

schema_only - the connector runs a snapshot of the schemas and not the data. This setting is useful when you do not need the topics to contain a consistent snapshot of the data but need them to have only the changes since the connector was started.

schema_only_recovery - this is a recovery setting for a connector that has already been capturing changes. When you restart the connector, this setting enables recovery of a corrupted or lost database schema history topic. You might set it periodically to “clean up” a database schema history topic that has been growing unexpectedly. Database schema history topics require infinite retention.

  • Type: string
  • Default: initial
  • Valid Values: initial, initial_only, never, schema_only, schema_only_recovery, when_needed
  • Importance: medium
snapshot.locking.mode

Controls whether and how long the connector holds the global MySQL read lock, which prevents any updates to the database, while the connector is performing a snapshot. Possible settings are: minimal, minimal_percona, extended, and none.

minimal - the connector holds the global read lock for just the initial portion of the snapshot, while the database schemas and other metadata are being read. The remaining work in a snapshot involves selecting all rows from each table. This is accomplished using a REPEATABLE READ transaction, even when the lock is no longer held and other MySQL clients are updating the database.

minimal_percona - similar to minimal mode except the connector uses a (Percona-specific) backup lock. This mode does not flush tables to disk, is not blocked by long-running reads, and is available only in Percona Server.

extended - blocks all writes for the duration of the snapshot. Use this setting if there are clients that are submitting operations that MySQL excludes from REPEATABLE READ semantics.

none - prevents the connector from acquiring any table locks during the snapshot. While this setting is allowed with all snapshot modes, it is safe to use if and only if no schema changes are happening while the snapshot is running. For tables defined with MyISAM engine, the tables would still be locked despite this property being set as MyISAM acquires a table lock. This behavior is unlike InnoDB engine, which acquires row level locks.

  • Type: string
  • Default: minimal
  • Valid Values: extended, minimal, minimal_percona, none
  • Importance: low
database.include.list

An optional, comma-separated list of regular expressions that match the names of the databases for which to capture changes. The connector does not capture changes in any database whose name is not in this list. By default, the connector captures changes in all databases.

To match the name of a database, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire name string of the database; it does not match substrings that might be present in a database name.

  • Type: list
  • Importance: medium
table.include.list

An optional, comma-separated list of regular expressions that match fully-qualified table identifiers for tables whose changes you want to capture. When this property is set, the connector captures changes only from the specified tables. Each identifier is of the form database.tableName. By default, the connector captures changes in every non-system table in each schema whose changes are being captured.

To match the name of a table, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire identifier for the table; it does not match substrings that might be present in a table name.

If you include this property in the configuration, do not also set the table.exclude.list property.

  • Type: list
  • Importance: medium
table.exclude.list

An optional, comma-separated list of regular expressions that match fully-qualified table identifiers for tables whose changes you do not want to capture. Each identifier is of the form database.tableName. When this property is set, the connector captures changes from every table that you do not specify.

To match the name of a table, Debezium applies the regular expression that you specify as an anchored regular expression. That is, the specified expression is matched against the entire identifier for the table; it does not match substrings that might be present in a table name.

If you include this property in the configuration, do not set the table.include.list property.

  • Type: list
  • Importance: medium
event.processing.failure.handling.mode

Specifies how the connector should react to exceptions during processing of events. Possible settings are: fail, skip, and warn.

fail propagates the exception, indicates the offset of the problematic event, and causes the connector to stop.

warn logs the offset of the problematic event, skips that event, and continues processing.

skip skips the problematic event and continues processing.

  • Type: string
  • Default: fail
  • Valid Values: fail, skip, warn
  • Importance: low
schema.name.adjustment.mode

Specifies how schema names should be adjusted for compatibility with the message converter used by the connector. Possible settings are: none, avro, and avro_unicode.

none does not apply any adjustment.

avro replaces the characters that cannot be used in the Avro type name with underscore.

avro_unicode replaces the underscore or characters that cannot be used in the Avro type name with corresponding unicode like _uxxxx. Note: _ is an escape sequence like backslash in Java.

  • Type: string
  • Default: none
  • Valid Values: avro, avro_unicode, none
  • Importance: medium
field.name.adjustment.mode

Specifies how field names should be adjusted for compatibility with the message converter used by the connector. Possible settings are: none, avro, and avro_unicode.

none does not apply any adjustment.

avro replaces the characters that cannot be used in the Avro type name with underscore.

avro_unicode replaces the underscore or characters that cannot be used in the Avro type name with corresponding unicode like _uxxxx. Note: _ is an escape sequence like backslash in Java.

  • Type: string
  • Default: none
  • Valid Values: avro, avro_unicode, none
  • Importance: medium
heartbeat.interval.ms

Controls how frequently the connector sends heartbeat messages to a Kafka topic. The behavior of default value 0 is that the connector does not send heartbeat messages. Heartbeat messages are useful for monitoring whether the connector is receiving change events from the database. Heartbeat messages might help decrease the number of change events that need to be re-sent when a connector restarts. To send heartbeat messages, set this property to a positive integer, which indicates the number of milliseconds between heartbeat messages.

  • Type: int
  • Default: 0
  • Valid Values: [0,…]
  • Importance: low
inconsistent.schema.handling.mode

Specifies how the connector should react to binlog events that belong to a table missing from internal schema representation. Possible settings are: fail, skip, and warn.

fail - throws an exception that indicates the problematic event and its binlog offset, and causes the connector to stop.

skip - passes over the problematic event and does not log anything.

warn - logs the problematic event and its binlog offset and skips the event.

  • Type: string
  • Default: fail
  • Valid Values: fail, skip, warn
  • Importance: medium
schema.history.internal.skip.unparseable.ddl

A Boolean value that specifies whether the connector should ignore malformed or unknown database statements (true), or stop processing so a human can fix the issue (false). Defaults to false. Consider setting this to true to ignore unparseable statements.

  • Type: boolean
  • Default: false
  • Importance: low
schema.history.internal.store.only.captured.tables.ddl

A Boolean value that specifies whether the connector records schema structures from all tables in a schema or database, or only from tables that are designated for capture. Defaults to false.

false - During a database snapshot, the connector records the schema data for all non-system tables in the database, including tables that are not designated for capture. It’s best to retain the default setting. If you later decide to capture changes from tables that you did not originally designate for capture, the connector can easily begin to capture data from those tables, because their schema structure is already stored in the schema history topic.

true - During a database snapshot, the connector records the table schemas only for the tables from which Debezium captures change events. If you change the default value, and you later configure the connector to capture data from other tables in the database, the connector lacks the schema information that it requires to capture change events from the tables.

  • Type: boolean
  • Default: false
  • Importance: low

Schema Config

schema.context.name

Add a schema context name. A schema context represents an independent scope in Schema Registry. It is a separate sub-schema tied to topics in different Kafka clusters that share the same Schema Registry instance. If not used, the connector uses the default schema configured for Schema Registry in your Confluent Cloud environment.

  • Type: string
  • Default: default
  • Importance: medium
key.converter.reference.subject.name.strategy

Set the subject reference name strategy for key. Valid entries are DefaultReferenceSubjectNameStrategy or QualifiedReferenceSubjectNameStrategy. Note that the subject reference name strategy can be selected only for PROTOBUF format with the default strategy being DefaultReferenceSubjectNameStrategy.

  • Type: string
  • Default: DefaultReferenceSubjectNameStrategy
  • Importance: high
value.converter.reference.subject.name.strategy

Set the subject reference name strategy for value. Valid entries are DefaultReferenceSubjectNameStrategy or QualifiedReferenceSubjectNameStrategy. Note that the subject reference name strategy can be selected only for PROTOBUF format with the default strategy being DefaultReferenceSubjectNameStrategy.

  • Type: string
  • Default: DefaultReferenceSubjectNameStrategy
  • Importance: high

How should we handle data types?

decimal.handling.mode

Specifies how the connector should handle values for DECIMAL and NUMERIC columns. Possible settings are: precise, double, and string.

precise represents values by using java.math.BigDecimal to represent values in binary form in change events. double represents values by using double values, which might result in a loss of precision but which is easier to use. string encodes values as formatted strings, which are easy to consume but semantic information about the real type is lost.

  • Type: string
  • Default: precise
  • Valid Values: double, precise, string
  • Importance: medium
time.precision.mode

Time, date, and timestamps can be represented with different kinds of precisions:

adaptive_time_microseconds captures the date, datetime and timestamp values exactly as in the database using either millisecond, microsecond, or nanosecond precision values based on the database column’s type. An exception is TIME type fields, which are always captured as microseconds.

connect always represents time and timestamp values by using Kafka Connect’s built-in representations for Time, Date, and Timestamp, which use millisecond precision regardless of the database columns’ precision.

  • Type: string
  • Default: adaptive_time_microseconds
  • Valid Values: adaptive_time_microseconds, connect
  • Importance: medium

Number of tasks for this connector

tasks.max

Maximum number of tasks for the connector.

  • Type: int
  • Valid Values: [1,…,1]
  • Importance: high

Next Steps

For an example that shows fully-managed Confluent Cloud connectors in action with Confluent Cloud ksqlDB, see the Cloud ETL Demo. This example also shows how to use Confluent CLI to manage your resources in Confluent Cloud.

../../_images/topology.png